Contents

Fro	ntispiece	<i>page</i> i
Pre	face to the First Edition	x
Prej	face to the Second Edition	xii
ı.]	Regular polygons	
I·I	Isometries	1
I · 2	The cyclic and dihedral groups	1
1.3	The theorem of Leonardo da Vinci	3
1.4	The product of two involutory isometries	3
1.2	Regular polygons in n dimensions	3
1.6	Straight and circular polygons	4
1.7	Zigzags and antiprismatic polygons	(
1.8	Helical polygons	•
1.9	Remarks	8
2.]	Regular polyhedra	
2·I	Spherical tessellations	g
2.2	Flags and Petrie polygons	12
2.3	Reflection groups and rotation groups	14
2.4	Wythoff's construction	16
2.5	The Schwarz triangles	19
2.6	Remarks	20
3. I	Polyhedral kaleidoscopes	
3.1	The characteristic orthoscheme	21
3.2	The icosahedral kaleidoscope	23
3.3	Cayley diagrams and presentations	24
3.4	Finite groups generated by half-turns	26
3.2	Remarks	28
4. I	Real four-space and the unitary plane	
4·1	Spherical honeycombs	29
т - 4∙2	The crystallographic regular polytopes	30
4.3	Flags and orthoschemes	32
4·4	The spherical torus	35
4.2	Double prisms	37
. •	•	

4.6	The 600-cell and the 120-cell	38
4.7		46
4.8	A family of regular complex polygons	46
4.9	Remarks	52
5.	Frieze patterns	
5·1	Some examples	55
5.2	Proof of the periodicity	56
5.3	Ptolemaic patterns	57
5.4	Real polytopes in four dimensions	57
5.2	Different patterns for the same polytope	60
5.6	Patterns of order 6 and period 3	60
5.7	Real polytopes in n dimensions	62
5.8	Remarks	63
6. ′	The geometry of quaternions	
6.1	Pairs of complex numbers	64
6.2	Quaternions of real numbers	65
6.3	Reflections	66
6.4	Rotations	66
	Finite groups of quaternions	67
	Generators for $\langle p, q, 2 \rangle$	68
6.7	Screws in Euclidean 4-space	69
6.8	Rotatory-reflections	72
6.9	Remarks	72
7. 7	The binary polyhedral groups	
7·1	The cyclic and dicyclic groups	74
7.2	The binary tetrahedral group	75
7.3	The binary octahedral group	77
7.4	The binary icosahedral group	78
7.5	Finite groups generated by pure quaternions	78
7.6	Representation by matrices	80
7.7	The unimodular group	81
7.8	A representation using residues modulo $h + r$	81

7.9

Remarks

82 vii

Contents

8. L	Initary space	
8·1	Affine coordinates	83
8.2	Hermitian forms	83
8.3	Inner products	84
8.4	Lengths and angles	84
8.5	Unitary transformations	85
8.6	Dual bases	86
8.7	Reflections	87
8.8	A complex kaleidoscope	88
8.9		88
a. 7	The unitary plane, using quaternions	
9·1	Unitary groups	89
9.2	A combination of cyclic groups	90
9.3	An extension of the binary polyhedral groups	90
9.4	Reflections	91
9.5	Groups generated by involutory reflections	91
9.6	Other groups generated by three reflections	93
9.7	Two-generator subgroups	93
9.8	The group $p_1[q] p_2$ and its invariant Hermitian form	94
9.9	Remarks	96
	The complete enumeration of finite reflection	
\mathbf{g}	roups in the unitary plane	
10.1	The finite unitary groups in the plane	98
10.3	Reflection groups of type 1	98
10.3	Reflection groups of types 2 and 3	99
10.4	Reflection groups of types 3' and 4	99
10.5	Reflection groups of type 5	100
10.6	Reflection groups of type 6	100
10.7	Reflection groups of type 7	101
10.8	Reflection groups of type 8	101
10.9	Reflection groups of type 9	101
II.	Regular complex polygons and Cayley diagrams	
11.1	Regular complex polygons	103
	Real representations	104
	Petrie polygons	105
	Some useful subgroups of $p[2q]r$	106
	Cayley diagrams for reflection groups	108
	Apeirogons	111
viii		

11.7 A general treatment for the binary polyhedral groups 11.8 Remarks	112
12. Regular complex polytopes defined and describe	ed
12·1 Definitions	115
12.2 Hermitian forms	117
12.3 The Hessian polyhedron	119
12.4 Other complex polyhedra	124
12.5 The Witting polytope	132
12.6 The honeycomb of Witting polytopes	135
12.7 Cartesian products of apeirogons	135
12.8 Cycles of honeycombs	136
12.9 Remarks	140
13. The regular complex polytopes and their symmetry groups	
13.1 The regular polytopes and their van Oss polygons	141
13.2 The regular honeycombs	144
13.3 Cycles and frieze patterns	146
13.4 Presenting the symmetry groups	147
13.5 A historical digression	149
13.6 Petrie polygons and exponents	150
13.7 Numerical properties of the non-starry polytopes	153
13.8 Presenting the collineation groups	154
13.9 Invariants	154
14. Almost regular polytopes	
14·1 A complex polyhedron with 2p2 triangular faces	156
14.2 Other complex polyhedra with triangular faces	158
14.3 The exponents	159
14.4 The groups $G^{3,2p,2q}$	160
14.5 The Kleinian polyhedron with 112 triangular faces	161
14.6 McMullen's two polyhedra with 84 square faces	166
14.7 Unitary 4-space	172
14.8 Epilogue	174
Tables	
TABLE I The Schwarz triangles	176
TABLE II The finite groups generated by two reflections	176

TABLE III	The two-dimensional reflection groups and their	
	reflection subgroups	177
Table iv	The regular polygons	178
Table v	The non-starry polyhedra and four-dimensional	•
	polytopes	180
TABLE VI	The regular honeycombs	181

Answers	182
References	203
Index	207

Answers

Contents