Contents

Preface.	A Personal View of Automated Reasoning Research	x
Chapter	1. Introduction to Automated Reasoning	
1.	Introduction	
2.	The potential scope of automated reasoning	
3.	The current scope of automated reasoning	3
4.	Mathematical logic	4
5.	Automation of first-order logic	4
6.	Clauses	4
7.	Conversion to clausal form	-
8.	Cut rule	8
9.	Substitutions	8
10.	Unification algorithm	10
11.	Binary resolution	1
12.	Binary resolution is dead, long live binary resolution!	
13.	Hyperresolution	
14.	UR-resolution	13
15.	Equality reasoning	14
16.	Other strategies for fighting the combinatorial explosion	
17.	Infinite schemata	
18.	Theorem provers used in this work	
19.	Outline of remaining chapters	
20.	Survey of principal literature	22
Chapter	2. Von Neumann-Bernays-Gödel Set Theory	
1.	Introduction	2
2.	Notation	2:
3.	Simplifications	20
	3.1. Sethood	20
	3.2. Equality	2
	3.3. Introduction of ordered pairs	2
	3.4. Use of ordered pairs	2
	3.5. Constructor axioms	29
	3.6. Class existence theorem	30
	3.7. Constructors versus Skolem functors	3

viii CONTENTS

4.	Clauses for axioms and definitions	34
5.	Proving classes equal	42
6.	Boolean demodulators	46
7.	Skolem functors and the Axiom of Choice	49
8.	Theorems proved	50
9.	Use of previously proved theorems	50
10.	Heuristics and option settings	51
11.	Proof finder or proof verifier?	53
12.	Proof of Cantor's theorem	54
13.	Proof that the composition of homomorphisms	
	is a homomorphism	56
14.	Developing a unification algorithm	
	appropriate to NBG set theory	63
15.	Conclusion	64
Chapter	3. Peano's Arithmetic	
1.	Introduction	65
	The axioms	67
	Theorems proved	68
	Numerals	69
	Difference	70
6.		70
7.	6	71
8.		73
9.	,	74
10.	Definition by primitive recursion	75
11.	Definition of lists	75
12.	A schema for proving metatheorems	77
13.		
	The square root of any prime is irrational	80
14.	Greek classics 2: There are infinitely many primes	82
15.	· · · · · · · · · · · · · · · · · · ·	84
16.	Prime power factorization of greatest common divisor	86
17.	Euler's theorem	88
18.	Related research	89
19.	Goldbach's conjecture	90

ix

Chapter	4. Tarski's Geometry	
1.	Introduction	92
2.	The axioms	93
3.	Comparison with earlier system	90
4.	Automated proof procedures	91
5.	Canonicalization in absence of commutative unification	98
6.	Theorems proved	99
7.	Proofs of challenge theorems	100
8.	Performance statistics	110
9.	Related research	117
10.	Further challenges	117
11.	Discussion	118
Chapter	5. Löb's Theorem and Gödel's Two Incompleteness Theorems	
1.	Introduction	120
2.	Background and motivation	120
3.	Theorems of Gödel and Löb	122
4.	The modal logic calculus K4	123
5.	Formalization of K4 within OTTER	125
	5.1. Tautologies	120
	5.2. Comments on demodulators	129
6.	Intermediate results	13
7.	Löb's theorem	132
8.	Gödel's first incompleteness theorem	134
9.	Gödel's second incompleteness theorem	13:
10.	Further research	130
11.	Conclusion	13'
Chapter	6. Unsolved Problems in Elementary Number T	heory
1	Introduction	138
1. 2.	The problems	139
3.	Conclusion and beginning	150
J.	CONTRACTOR MILE COPINITION	

CONTENTS

X

Appendix 1.	Gödel's Axioms for Set Theory	151
Appendix 2.	Theorems Proved in NBG Set Theory	155
Appendix 3.	Theorems Proved in Peano's Arithmetic	184
Bibliography		259
Index of Name	es	267
Index of Subjects		269