Contents

Preface	vi
Chapter I. Convex Sets at Large	1
1. Convex Sets. Main Definitions, Some Interesting Examples	
and Problems	1
2. Properties of the Convex Hull. Carathéodory's Theorem	7
3. An Application: Positive Polynomials	12
4. Theorems of Radon and Helly	17
5. Applications of Helly's Theorem in Combinatorial Geome-	
try	2.
6. An Application to Approximation	24
7. The Euler Characteristic	28
8. Application: Convex Sets and Linear Transformations	33
9. Polyhedra and Linear Transformations	3'
10. Remarks	39
Chapter II. Faces and Extreme Points	4
1. The Isolation Theorem	4
2. Convex Sets in Euclidean Space	4'
3. Extreme Points. The Krein-Milman Theorem for Euclidean	
Space	5
4. Extreme Points of Polyhedra	5

5.	The Birkhoff Polytope	56
6.	The Permutation Polytope and the Schur-Horn Theorem	58
7.	The Transportation Polyhedron	60
8.	Convex Cones	65
9.	The Moment Curve and the Moment Cone	67
10.	An Application: "Double Precision" Formulas for Numerical Integration	70
11	The Cone of Non-negative Polynomials	73
	The Cone of Positive Semidefinite Matrices	78
	Linear Equations in Positive Semidefinite Matrices	83
	Applications: Quadratic Convexity Theorems	89
	Applications: Problems of Graph Realizability	94
	Closed Convex Sets	99
	Remarks	103
Chapter	III. Convex Sets in Topological Vector Spaces	105
1.	Separation Theorems in Euclidean Space and Beyond	105
2.	Topological Vector Spaces, Convex Sets and Hyperplanes	109
3.	Separation Theorems in Topological Vector Spaces	117
4.	The Krein-Milman Theorem for Topological Vector Spaces	121
5.	Polyhedra in L^{∞}	123
6.	An Application: Problems of Linear Optimal Control	126
7.	An Application: The Lyapunov Convexity Theorem	130
8.	The "Simplex" of Probability Measures	133
9.	Extreme Points of the Intersection. Applications	136
10.	Remarks	141
Chapter	IV. Polarity, Duality and Linear Programming	143
	Polarity in Euclidean Space	143
2.	An Application: Recognizing Points in the Moment Cone	150
3.	Duality of Vector Spaces	154
4.	Duality of Topological Vector Spaces	157
	Ordering a Vector Space by a Cone	160
6.	Linear Programming Problems	162
7.	Zero Duality Gap	166
8.	Polyhedral Linear Programming	172

9. An Application: The Transportation Problem	176
10. Semidefinite Programming	178
11. An Application: The Clique and Chromatic Numbers of a	
Graph	182
12. Linear Programming in L^{∞}	185
13. Uniform Approximation as a Linear Programming Problem	191
14. The Mass-Transfer Problem	196
15. Remarks	202
Chapter V. Convex Bodies and Ellipsoids	203
1. Ellipsoids	203
2. The Maximum Volume Ellipsoid of a Convex Body	207
3. Norms and Their Approximations	216
4. The Ellipsoid Method	225
5. The Gaussian Measure on Euclidean Space	232
6. Applications to Low Rank Approximations of Matrices	240
7. The Measure and Metric on the Unit Sphere	244
8. Remarks	248
Chapter VI. Faces of Polytopes	249
1. Polytopes and Polarity	249
2. The Facial Structure of the Permutation Polytope	254
3. The Euler-Poincaré Formula	258
4. Polytopes with Many Faces: Cyclic Polytopes	262
5. Simple Polytopes	264
6. The h-vector of a Simple Polytope.	
Dehn-Sommerville Equations	26
7. The Upper Bound Theorem	270
8. Centrally Symmetric Polytopes	274
9. Remarks	27'
Chapter VII. Lattices and Convex Bodies	279
1. Lattices	279
2. The Determinant of a Lattice	28
3. Minkowski's Convex Body Theorem	29

4. Applications: Sums of Squares and Rational Approxima-	
tions	298
5. Sphere Packings	302
6. The Minkowski-Hlawka Theorem	305
7. The Dual Lattice	309
8. The Flatness Theorem	315
9. Constructing a Short Vector and a Reduced Basis	319
10. Remarks	324
Chapter VIII. Lattice Points and Polyhedra	325
1. Generating Functions and Simple Rational Cones	325
2. Generating Functions and Rational Cones	330
3. Generating Functions and Rational Polyhedra	335
4. Brion's Theorem	341
5. The Ehrhart Polynomial of a Polytope	349
6. Example: Totally Unimodular Polytopes	353
7. Remarks	356
Bibliography	357
Index	363