CONTENTS

Notation		
In	ntroduction	:
	I LOWER SEMICONTINUITY OF INTEGRAL FUNCTIONALS	
1	Lower semicontinuity and coerciveness	1
	1.1 Lower semicontinuity	13
	1.2 Yosida transforms	13
	1.3 Coerciveness conditions. The direct method	16
	1.4 Exercises	17
2	Weak convergence	18
	2.1 Weak convergence in Lebesgue spaces	18
	2.2 Weak convergence in Sobolev spaces	22
	2.3 Weak* convergence of measures	22
	2.4 Weak compactness criteria in L^1	24
	2.5 Exercises	27
3	Minimum problems in Sobolev spaces	28
	3.1 The direct method. An example of application	28
	3.2 Borel and Carathéodory functions	29
	3.3 Rellich's Theorem and equivalent conditions for low	ver er
	semicontinuity	31
	3.4 Exercises	32
4	Necessary conditions for weak lower semicontinuit	t y 33
	4.1 General necessary conditions	33
	4.2 W ^{1,p} -quasiconvexity	34
	4.3 Rank-1-convexity	40
	4.4 Exercises	41
5	Sufficient conditions for weak lower semicontinuity	
	5.1 Convexity	42
	5.2 Polyconvexity	45
	5.3 Quasiconvexity	48
	5.4 Exercises	52
6	The structure of quasiconvex functions	54
	6.1 Quasiconvexity of polyconvex functions	54
	6.2 Oussiconveyification	55

x Contents

	 6.3 Example of a quasiconvex non-polyconvex function 6.4 Example of a rank-1-convex non-quasiconvex function 	59 60
	II Γ-CONVERGENCE	
7	 A naïve introduction to Γ-convergence 7.1 Definition and basic properties 7.2 Lower and upper Γ-limits 7.3 Further properties. Compactness 7.4 Exercises 	65 65 67 70 72
8	 The indirect methods of Γ-convergence 8.1 Γ-limits and Yosida transforms 8.2 An example: Γ-limits of quadratic functionals 	73 73 74
9	Direct methods. An integral representation result 9.1 Localization 9.2 Integral representation on Sobolev spaces 9.3 Integral representation of homogeneous functionals	77 77 77 81
10	Increasing set functions 10.1 Increasing set functions 10.2 A characterization of measures as set functions 10.3 Increasing set functions and compactness of Γ -limits	82 82 82 84
11	 The fundamental estimate 11.1 Fundamental estimates 11.2 Subadditivity of Γ-limits 11.3 Γ-limits and boundary values 11.4 Exercises 	85 85 88 90 92
12	 Integral functionals with standard growth conditions 12.1 Standard growth conditions 12.2 Fundamental estimate 12.3 Compactness for the Γ-limits 12.4 Γ-limits of homogeneous functionals 12.5 Exercises 	93 93 93 95 96 98
	III BASIC HOMOGENIZATION	
13	 A 1-dimensional example 13.1 The cell-problem homogenization formula 13.2 The asymptotic homogenization formula 13.3 Proof of the Γ-convergence 13.4 Exercises 	101 101 103 104 106
	Periodic homogenization 14.1 The asymptotic homogenization formula	108 109

Contents	x
Contents	2

	14.2 The Homogenization Theorem14.3 Convex homogenization	111 114
	14.3.1 The cell-problem formula	114
	 14.3.2 Non-coercive convex homogenization 14.4 A counterexample to the cell-problem formula 14.5 An application: homogenization of elliptic equations in 	115 120
	divergence form 14.6 Exercises	$\frac{123}{125}$
15	Almost-periodic homogenization 15.1 Homogenization of uniformly almost-periodic funct-	128
	ionals 15.2 An example: loss of smoothness by homogenization 15.3 Exercises	128 135 140
10	Two applications	142
10	16.1 Homogenization of Riemannian metrics 16.2 Homogenization of Hamilton Jacobi equations	142 145
17	A closure theorem for the homogenization 17.1 A closure theorem	150 150
	17.2 An application: homogenization of Besicovitch almost- periodic functionals	156
18	Loss of polyconvexity by homogenization 18.1 An example	160 160
	IV FINER HOMOGENIZATION RESULTS	
19	Homogenization of connected media 19.1 A homogenization theorem on periodic connected	167
	domains	167 177
	19.2 Convergence of Neumann boundary value problems 19.3 Convergence of Dirichlet boundary value problems	179
20	Homogenization with stiff and soft inclusions	181
	20.1 Media with stiff and soft inclusions	181 183
	20.2 The Homogenization Theorem	190
	20.3 Convergence of minima 20.4 A Lavrentiev phenomenon	193
	20.5 Loss of polyconvexity after homogenization	196
21	Homogenization with non-standard growth	199
	conditions 21.1 A class of non-standard integrals	199
	21.1 A class of non-standard integrals 21.2 Convex homogenization	202
	21.3 Non-convex homogenization	203
	21.4 Exercises	212

xii Contents

Index

22	Iterated homogenization	214
	22.1 Statement of the Iterated Homogenization Theorem	214
	22.2 Proof of the Iterated Homogenization Theorem	215
	22.3 Exercises	222
23	Correctors for the homogenization	227
	23.1 Convergence of momenta in homogenization	227
	23.2 Definition and some properties of the correctors	234
	23.3 Statement and proof of the correctors result	240
	23.4 Correctors in the quasiperiodic case	246
	23.5 Exercises	248
24	Homogenization of multi-dimensional structures	249
	24.1 A smooth approach	249
	24.2 A measure Sobolev-space approach	253
	24.3 Homogenization of periodic thin structures	263
	24.4 Exercises	268
	V APPENDICES	
A	Almost-periodic functions	273
В	Construction of extension operators	277
C	Some regularity results	287
References		
	Notes to references	294

297