## **Contents**

| Notation                   |                                                                                                                                                                                                                                        |                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Intro                      | duction                                                                                                                                                                                                                                | xv                                                 |
| 1<br>1                     | Normal numbers  1 Definitions and elementary properties 2 Metrical lemmas and Borel's theorem 3 The law of the iterated logarithm Notes                                                                                                | 1<br>1<br>7<br>18<br>23                            |
| 2<br>2<br>2<br>2<br>2<br>2 | Diophantine approximation 2.1 Statement of results 2.2 Zero-one laws 2.3 The Duffin and Schaeffer theorem 2.4 Vaaler's theorem 2.5 Proof of Theorems 2.3 and 2.8 2.6 The Duffin and Schaeffer conjecture reformulated Notes            | 24<br>24<br>29<br>37<br>44<br>51<br>53<br>58       |
| 3<br>3<br>3<br>3<br>3      | SCD sums with applications 1.1 Statement of results 1.2 Proof of Theorem 3.1 1.3 Proof of Theorem 3.2 1.4 Proof of Theorems 3.3 and 3.4 1.5 Proof of Theorems 3.5 1.6 Proof of Theorems 3.6 and 3.7 1.7 Proof of Theorem 3.8 1.8 Notes | 60<br>60<br>67<br>70<br>78<br>82<br>86<br>91<br>93 |
| 4<br>4<br>4<br>4           | 1 Statement of results 2 Proof of Theorems 4.1 and 4.2 3 Proof of Theorem 4.3 4 Proof of Theorem 4.4 5 The metric theory of continued fractions 6 A generalization to higher dimensions Notes                                          | 94<br>94<br>97<br>105<br>109<br>112<br>115         |

|      |                                                 | Contents |
|------|-------------------------------------------------|----------|
| Unif | 120                                             |          |
| 5.1  | Definitions and elementary properties           | 120      |
| 5.2  | Trigonometric sums, the Erdős-Turán theorem and |          |
|      | the Weyl criterion                              | 126      |
| 5.3  | The metrical theory of uniform distribution     | 131      |
| 5.4  | Uniform distribution in higher dimensions       | 151      |

161

164

164

171

175 177

179

180 186

187

187

192

198 202

206

211 213

215

215

220 226

229

233

234

237

238

240

241

241

245

256

261

Х

5

6

7

8

9

6.1 6.2

6.3

6.4

6.5

6.6

7.1 7.2

7.3

7.4

7.5

7.6

8.1 8.2

8.3

84

8.5

86

8.7

8.8

9.1

9.2

9.3

Notes

Notes

Non-integer sequences

Notes

Notes

Notes

Introduction

Diophantine approximation with restricted numerator and denominator

Proof of Theorem 6.2

Proof of Theorem 6.3

Proof of Theorem 6.4

Proof of Theorem 6.7

Proof of Theorem 7.4

Proof of Theorem 7.6

Proof of Theorem 8.1

Proof of Theorem 8.2

Proof of Theorem 8.3

Proof of Theorem 8.4

Proof of Theorem 8.5

Proof of Theorem 8.6

Proof of Theorem 8.7

Proof of Theorem 9.2

Proof of Theorem 9.3

Diophantine approximation on manifolds

The integer parts of sequences

Proof of Theorems 6.5 and 6.6

Proof of Theorems 7.1 and 7.2

A reduction of the problem and proofs for Theorems 7.3 and 7.5

Proof of Theorems 7.7 and 7.8

Introduction and statement of results

Introduction and statement of results

Introduction and statement of results

| Contents   |       |                                        | xi  |
|------------|-------|----------------------------------------|-----|
| 10         | Hause | 262                                    |     |
|            | 10.1  | Introduction and statement of results  | 262 |
|            | 10.2  | Proof of Theorems 10.1 and 10.2        | 266 |
|            | 10.3  | Proof of Theorems 10.3 and 10.4        | 267 |
|            | 10.4  | Proof of Theorems 10.5, 10.6, and 10.7 | 271 |
|            | 10.5  | Proof of Theorem 10.8                  | 276 |
|            |       | Notes                                  | 278 |
| References |       | 280                                    |     |
| Index      |       |                                        | 295 |