Contents

Preface		X
Summary of Global Notation		
Part I - I	Prerequisites	1
Chapter 1	Prerequisites from Category Theory	3
1	Definitions	3
2	Universal Constructions	4
3	Basic Notions from Categorical Theory	5
Chapter 2	Prerequisites from Point Set Topology	7
1	Definitions and Elementary Constructions	7
2	Separation	8
3	Compactness	g
4	Connectedness	10
5	Coverings and Paracompactness	10
6	Coherent and Compactly Generated Topologies	11
7	CW-complexes	12
Chapter 3	The Fundamental Group	15
1	Homotopy	15
2	Covering Spaces	17
3	Van Kampen's Theorem	20
Chapter 4	Homological Algebra	21
1	Chain Complexes	21
2	Direct Limits	2 4
3	Derived Functors	25
4	Tensor Products, Duals, and Universal Coefficient Theorems	28
5	Adjoint Functors	30
6	Relative Derived Functors	30
7	Derived Functors of lim	31
Chapter 5	Homology of Spaces	33
1	Eilenberg-Steenrod Homology Axioms	33
$\hat{2}$	Singular Homology Theory	34
3	Homology Calculations and Elementary Applications	38
4	Homology of CW-complexes; Cellular Homology	39
5	Acyclic Models	41
6	Singular Cohomology	43
7	Relative Cohomology	44
•	· · · · · · · · · · · · · · · · · · ·	

viii	Contents

Chapter 6	Manifolds	47
1	Definitions	47
2	Orientation on Manifolds	47
3	Poincaré Duality	48
Part II -	Homotopy Theory	51
Chapter 7	Higher Homotopy Theory	53
1	Fibrations and Cofibrations	53
2	Group Structures on Sets of Homotopy Classes	62
3	Homology of a Loop-suspension	66
4	Relation between Homotopy Groups and Homology Groups	67
5	Reduction to the Case of Simply Connected CW-Complexes	72
6	Diagrams of Exact Homotopy Sequences	76
7	Ganea's Theorem	81
8	Whitehead and Samelson Products	83
9	James Construction	84
10	Lusternik-Schnirrelmann Category	88
Chapter 8	Simplicial Sets	89
1	Definitions and First Principles	89
2	Simplicial Fibrations and Kan Complexes	92
3	Simplicial Groups	94
4	The Singular Complex	94
5	Simplicial Abelian Groups	95
6	Simplicial Approximation	97
_	Fibre Bundles and Classifying Spaces	99
1	Fibre Bundles	99
2	Classifying Principal Bundles and Milnor's Construction	100
	O Hopf Algebras and Graded Lie Algebras	105
1	Algebras and Coalgebras	105
2	Tensor Products and Cotensor Products	107
3	Kernels and Cokernels	107
4	Primitives and Indecomposables	109
5	Graded Lie Algebras	109
6	The Canonical Conjugation	110
	Spectral Sequences	113
	Filtrations	113
2	Definition of Spectral Sequence	114
3	Exact Couples	116
4	Exact Couple of a Filtered Object	119
5	Bigraded Spectral Sequences	121
6	Multiplicative Spectral Sequences	122

Contents ix

7	Spectral Sequence of a Double Complex	123
8	Bockstein Spectral Sequence	125
9	Serre Spectral Sequence	126
10 Adams-Hilton Models		136
11	11 Eilenberg-Moore Spectral Sequence	
12	Grothendieck Spectral Sequence	145
Chapter 1	2 Localization and Completion	147
1	Triples and Cotriples	147
2	The Bousfield-Kan Construction	147
Chapter 1	3 Generalized Homology and Stable Homotopy	153
1		153
2	Stable Homotopy Groups	156
3	Spectra	156
4	Eilenberg-MacLane Spaces and Brown Representability	158
Chapter 1	4 Cohomology Operations and the Steenrod Algebra	161
1	Primary Cohomology Operations	161
2	The Steenrod Algebra as a Hopf Algebra	162
3	Construction of the Steenrod Reduced Power Operations	163
4	Calculation of the Steenrod Algebra	170
5	Dual of the Steenrod Algebra	174
6	Sample Applications of the Steenrod Algebra	175
7	Secondary Cohomology Operations	179
Bibliograp	hy	181
Index		183