Contents

Pre	Preface	
1	Basics of Commutative Algebra	1
	1.1 Ideals and Varieties	2
	1.2 Noetherian Rings and the Hilbert Basis Theorem	4
	1.3 Associated Primes and Primary Decomposition	ϵ
	1.4 The Nullstellensatz and Zariski Topology	12
2	Projective Space and Graded Objects	18
	2.1 Projective Space and Projective Varieties	18
	2.2 Graded Rings and Modules, Hilbert Function and Series	21
	2.3 Linear Algebra Flashback, Hilbert Polynomial	26
3	Free Resolutions and Regular Sequences	34
	3.1 Free Modules and Projective Modules	35
	3.2 Free Resolutions	36
	3.3 Regular Sequences, Mapping Cone	42
4	Gröbner Bases and the Buchberger Algorithm	50
	4.1 Gröbner Bases	51
	4.2 Monomial Ideals and Applications	55
	4.3 Syzygies and Gröbner Bases for Modules	58
	4.4 Projection and Elimination	60
5	Combinatorics, Topology and the Stanley-Reisner Ring	64
	5.1 Simplicial Complexes and Simplicial Homology	65
	5.2 The Stanley–Reisner Ring	72
	5.3 Associated Primes and Primary Decomposition	77
6	Functors: Localization, Hom, and Tensor	80
	6.1 Localization	81
	6.2 The Hom Functor	84
	6.3 Tensor Product	88
7	Geometry of Points and the Hilbert Function	92
	7.1 Hilbert Functions of Points, Regularity	92

Contents X

	7.2 The Theorems of Macaulay and Gotzmann	99
	7.3 Artinian Reduction and Hypersurfaces	100
8	Snake Lemma, Derived Functors, Tor and Ext	107
	8.1 Snake Lemma, Long Exact Sequence in Homology	107
	8.2 Derived Functors, Tor	111
	8.3 Ext	116
	8.4 Double Complexes	124
9	Curves, Sheaves, and Cohomology	126
	9.1 Sheaves	126
	9.2 Cohomology and Global Sections	129
	9.3 Divisors and Maps to \mathbb{P}^n	133
	9.4 Riemann–Roch and Hilbert Polynomial Redux	139
10	Projective Dimension, Cohen-Macaulay Modules, Upper	
	Bound Theorem	145
	10.1 Codimension, Depth, Auslander–Buchsbaum Theorem	145
	10.2 Cohen–Macaulay Modules and Geometry	149
	10.3 The Upper Bound Conjecture for Spheres	158
Α	Abstract Algebra Primer	163
	A.1 Groups	163
	A.2 Rings and Modules	164
	A.3 Computational Algebra	168
В	Complex Analysis Primer	175
	B.1 Complex Functions, Cauchy–Riemann Equations	175
	B.2 Green's Theorem	176
	B.3 Cauchy's Theorem	178
	B.4 Taylor and Laurent Series, Residues	181
Bib	Bibliography	
Ind	Index	

189