Contents

Detailed Contents	XV
List of Figures and Tables	xix
1. Introduction: Starting with Neuroscience	I
2. Explanation and Causal Relevance	2 I
3. Causal Relevance and Manipulation	63
4. The Norms of Mechanistic Explanation	107
5. A Field-Guide to Levels	163
6. Nonfundamental Explanation	196
7. The Mosaic Unity of Neuroscience	228
Bibliography	272
Index	293

Detailed Contents

List of Figures and Tables	xix
1. Introduction: Starting with Neuroscience]
I. Introduction	I
2. Explanations in Neuroscience Describe Mechanisms	2
3. Explanations in Neuroscience are Multilevel	9
4. Explanations in Neuroscience Integrate Multiple Fields	16
5. Criteria of Adequacy for an Account of Explanation	19
2. Explanation and Causal Relevance	21
1. Introduction	21
2. How Calcium Explains Neurotransmitter Release	22
3. Explanation and Representation	28
4. The Covering-Law Model	34
5. The Unification Model	40
6. But What About the Hodgkin and Huxley Model?	49
7. Conclusion	61
3. Causal Relevance and Manipulation	63
1. Introduction	63
2. The Mechanism of Long-Term Potentiation	65
3. Causation as Transmission	72
3.1. Transmission and causal relevance	, 78
3.2. Omission and prevention	, 80
4. Causation and Mechanical Connection	86
5. Manipulation and Causation	93
5.1. Invariance, fragility, and contingency	99
5.2. Manipulation and criteria for explanation	100
5.3. Manipulation, omission, and prevention	104
6. Conclusion	105

DETAILED	CONTENTS	xvii

4.	The Norms of Mechanistic Explanation	107
	1. Introduction	107
	2. Two Normative Distinctions	112
	3. Explaining the Action Potential	114
	4. The Explanandum Phenomenon	122
	5. Components	128
	6. Activities	133
	7. Organization	134
	8. Constitutive Relevance	139
	8.1. Relevance and the boundaries of mechanisms	141
	8.2. Interlevel experiments and constitutive relevance	I 44
	8.2.1. Interference experiments	147
	8.2.2. Stimulation experiments	149
	8.2.3. Activation experiments	151
	8.3. Constitutive relevance as mutual manipulability	152
	9. Conclusion	160
5.	A Field-Guide to Levels	163
	1. Introduction	163
	2. Levels of Spatial Memory	165
	3. A Field-Guide to Levels	170
	3.1. Levels of science (units and products)	172
	3.2. Levels of nature	177
	3.2.1. Causal levels (processing and control)	177
	3.2.2. Levels of size	180
	3.2.3. Levels of composition	184
	3.2.3.1. Levels of mereology	184
	3.2.3.2. Levels of aggregativity	186
	3.2.3.3. Levels of mere material/spatial	
	containment	187
	3.3. Levels of mechanisms	188
	4. Conclusion	195
6.	Nonfundamental Explanation	196
	1. Introduction	196
	2. Causal Relevance and Making a Difference	198
	3. Contrasts and Switch-points	202

xviii DETAILED CONTENTS

4. Causal Powers at Higher Levels of Mechanisms	211
5. Causal Relevance at Higher Levels of Realization	217
6. Conclusion	227
7. The Mosaic Unity of Neuroscience	228
1. Introduction	228
2. Reduction and the History of Neuroscience	233
2.1. LTP's origins: not a top-down search but	-33
intralevel integration	237
2.2. The mechanistic shift	240
2.3. Mechanism as a working hypothesis	243
3. Intralevel Integration and the Mosaic Unity of	-43
Neuroscience	246
3.1. The space of possible mechanisms	247
3.2. Specific constraints on the space of possible	
mechanisms	248
3.2.1. Componency constraints	249
3.2.2. Spatial constraints	251
3.2.3. Temporal constraints	253
3.2.4. Active constraints	254
3.3. Reduction and the intralevel integration of fields	255
4. Interlevel Integration and the Mosaic Unity of	-33
Neuroscience	256
4.1. What is interlevel integration?	256
4.2. Constraints on interlevel integration	258
4.2.1. Accommodative constraints	259
4.2.2. Spatial and temporal interlevel constraints	261
4.2.3. Interlevel manipulability constraints	264
4.3. Mosaic interlevel integration	266
5. Conclusion: The Epistemic Function of the Mosaic	
Unity of Neuroscience	267
Bibliography	272
Index	-,-

293

List of Figures and Tables

Figures

Ι.Ι.	A phenomenon and its mechanism	7
2.1.	The action potential	50
2.2.	Predicted and observed action potentials	52
2.3.	Predicted and observed rising phases of action potentials	53
3.1.	Potentiation displayed	67
3.2.	A sketch of the synaptic mechanism of LTP	71
3.3.	Two aspects of causal-mechanical explanation	74
3.4.	An ideal intervention on X with respect to Y	97
4.I.	The equivalent circuit model of the neuronal membrane	115
4.2.	The action potential superimposed on a graph of changes in the membrane's conductance for Na^+ and K^+	116
4.3.	Hille's how-possibly mechanisms for gating channels	118
4.4.	Transmembrane regions of the Na ⁺ channel	I 20
4.5.	A plausible mechanism for activating Na+ channels	120
4.6.	A phenomenon and its mechanism	121
4.7a.	Abstract representation of an experiment for testing etiological (causal) relevance	145
4.7b.	Abstract representation of experiments for testing constitutive (or componential) relevance	146
5.1.	Levels of spatial memory	166
5.2.	A textbook depiction of LTP	168
5.3.	A taxonomy of levels	171
5.4.	Wimsatt's branching diagram of levels	174
5.5.	Churchland and Sejnowski's classic diagram of levels in	
	neuroscience	180
5.6.	Levels as local maxima of regularity and predictability	181
5.7.	Three levels of mechanisms	189

XX LIST OF FIGURES AND TABLES

5.8.	Levels are defined locally within decomposition hierarchies	194
7.1.	Integrating levels of mechanisms	257
	Tables	
4.1.	Common filler terms in neuroscience	113
7.1.	Intralevel and interlevel constraints on multilevel mechanisms	249