Contents

List of Figures	xii
List of Tables	XV
Preface	xvi
PART I Introduction	1
1 Introduction	3
2 Complexity in Social Worlds	g
2.1 The Standing Ovation Problem2.2 What's the Buzz?2.2.1 Stay Cool	10 14 14
2.2.2 Attack of the Killer Bees 2.2.3 Averaging Out Average Behavior	15 16 17
 2.3 A Tale of Two Cities 2.3.1 Adding Complexity 2.4 New Directions 2.5 Complex Social Worlds Redux 2.5.1 Questioning Complexity 	26 26 27 27
PART II Preliminaries	33
3 Modeling	35
3.1 Models as Maps3.2 A More Formal Approach to Modeling3.3 Modeling Complex Systems3.4 Modeling Modeling	36 38 40 42
4 On Emergence	44
4.1 A Theory of Emergence4.2 Beyond Disorganized Complexity4.2.1 Feedback and Organized Complexity	46 48 50
PART III Computational Modeling	55
5 Computation as Theory	57
5.1 Theory versus Tools 5.1.1 Physics Francy A Pseudo-Fraudian Analysis	59 62

viii • Contents

	5.2	Computation and Theory	64
		5.2.1 Computation in Theory	64
		5.2.2 Computation as Theory	67
	5.3	Objections to Computation as Theory	68
		5.3.1 Computations Build in Their Results	69
		5.3.2 Computations Lack Discipline	70
		5.3.3 Computational Models Are Only Approximations to	
		Specific Circumstances	71
		5.3.4 Computational Models Are Brittle	72
		5.3.5 Computational Models Are Hard to Test	73
		5.3.6 Computational Models Are Hard to Understand	76
	5.4	New Directions	76
6	Wh	y Agent-Based Objects?	78
	6.1	Flexibility versus Precision	78
	6.2		80
	6.3	Adaptive Agents	81
	6.4		83
	6.5	Heterogeneous Agents and Asymmetry	84
	6.6	Scalability	85
	6.7	Repeatable and Recoverable	86
	6.8	Constructive	86
	6.9	Low Cost	87
	6.10	D Economic E. coli (E. coni?)	88
P	ART	IV Models of Complex Adaptive	
		Social Systems	91
_		•	
/	ΑĿ	Basic Framework	93
	7.1	The Eightfold Way	93
		7.1.1 Right View	94
		7.1.2 Right Intention	95
		7.1.3 Right Speech	96
		7.1.4 Right Action	96
		7.1.5 Right Livelihood	97
		7.1.6 Right Effort	98
		7.1.7 Right Mindfulness	100
		7.1.8 Right Concentration	101
	7.2	Smoke and Mirrors: The Forest Fire Model	102
		7.2.1 A Simple Model of Forest Fires	102
		7.2.2 Fixed, Homogeneous Rules	102
		7.2.3 Homogeneous Adaptation	104
		7.2.4 Heterogeneous Adaptation	105

_		
Contents	•	1 Y

	7.2.5 Adding More Intelligence: Internal Models	107
	7.2.6 Omniscient Closure	108
	7.2.7 Banks	109
7.	3 Eight Folding into One	110
7.	4 Conclusion	113
8 C	omplex Adaptive Social Systems in One Dimension	114
8.	1 Cellular Automata	115
8.	2 Social Cellular Automata	119
	8.2.1 Socially Acceptable Rules	120
8.	3 Majority Rules	124
	8.3.1 The Zen of Mistakes in Majority Rule	128
8.	4 The Edge of Chaos	129
	8.4.1 Is There an Edge?	130
	8.4.2 Computation at the Edge of Chaos	137
	8.4.3 The Edge of Robustness	139
9 Sc	ocial Dynamics	141
9.	8 8	141
9.	0 0	143
9.	3 The Beach Problem	146
9.		151
9.	5 Networks	154
	9.5.1 Majority Rule and Network Structures	158
	9.5.2 Schelling's Segregation Model and Network Structures	163
9.	6 Self-Organized Criticality and Power Laws	165
	9.6.1 The Sand Pile Model	167
	9.6.2 A Minimalist Sand Pile	169
	9.6.3 Fat-Tailed Avalanches	171
	9.6.4 Purposive Agents	175
	9.6.5 The Forest Fire Model Redux	176
	9.6.6 Criticality in Social Systems	177
10 H	Evolving Automata	178
1	0.1 Agent Behavior	178
1	0.2 Adaptation	180
1	0.3 A Taxonomy of 2×2 Games	185
	10.3.1 Methodology	187
	10.3.2 Results	189
	0.4 Games Theory: One Agent, Many Games	191
1	0.5 Evolving Communication	192
	10.5.1 Results	194
	10.5.2 Furthering Communication	197
1	0.6 The Full Monty	198

x • Contents

11 Some Fundamentals of Organizational Decision Making	200
11.1 Organizations and Boolean Functions	201
11.2 Some Results	203
11.3 Do Organizations Just Find Solvable Problems?	206
11.3.1 Imperfection	207
11.4 Future Directions	210
Part V Conclusions	211
12 Social Science in Between	213
12.1 Some Contributions	214
12.2 The Interest in Between	218
12.2.1 In between Simple and Strategic Behavior	219
12.2.2 In between Pairs and Infinities of Agents	221
12.2.3 In between Equilibrium and Chaos	222
12.2.4 In between Richness and Rigor	223
12.2.5 In between Anarchy and Control	225
12.3 Here Be Dragons	225
Epilogue	227
The Interest in Between	227
Social Complexity	228
The Faraway Nearby	230
Appendixes	
A An Open Agenda For Complex Adaptive Social Systems	231
A.1 Whither Complexity	231
A.2 What Does it Take for a System to Exhibit Complex	
Behavior?	233
A.3 Is There an Objective Basis for Recognizing Emergence and	
Complexity?	233
A.4 Is There a Mathematics of Complex Adaptive Social Systems?	234
A.5 What Mechanisms Exist for Tuning the Performance of	
Complex Systems?	235
A.6 Do Productive Complex Systems Have Unusual Properties?	235
A.7 Do Social Systems Become More Complex over Time	236
A.8 What Makes a System Robust?	236
A.9 Causality in Complex Systems?	237
A.10 When Does Coevolution Work?	237
A.11 When Does Updating Matter?	238
A.12 When Does Heterogeneity Matter?	238

Α.	13 How Sophisticated Must Agents Be Before They Are	
	Interesting?	239
A.	14 What Are the Equivalence Classes of Adaptive Behavior?	240
A.	15 When Does Adaptation Lead to Optimization and	
	Equilibrium?	241
A.	16 How Important Is Communication to Complex Adaptive	
	Social Systems?	242
A.	17 How Do Decentralized Markets Equilibrate?	243
A.	18 When Do Organizations Arise?	243
A.	19 What Are the Origins of Social Life?	244
B Pr	ractices for Computational Modeling	245
В.	1 Keep the Model Simple	246
В.	2 Focus on the Science, Not the Computer	246
В.	3 The Old Computer Test	247
В.	4 Avoid Black Boxes	247
В.	5 Nest Your Models	248
В.	6 Have Tunable Dials	248
В.	7 Construct Flexible Frameworks	249
В.	8 Create Multiple Implementations	249
В.	9 Check the Parameters	250
В.	10 Document Code	250
В.	11 Know the Source of Random Numbers	251
В.	12 Beware of Debugging Bias	251
В.	13 Write Good Code	251
В.	14 Avoid False Precision	252
В.	15 Distribute Your Code	253
В.	16 Keep a Lab Notebook	253
В.	17 Prove Your Results	253
B.	18 Reward the Right Things	254
Bibli	iography	255
Inde.	x	261

Figures

1.1. Wealth of Nations	3
2.1. Standing ovations	13
2.2. A symmetric Tiebout world	18
2.3. Broken symmetry in the Tiebout world	19
2.4. Results of a computational Tiebout model	23
3.1. Maps as models	37
3.2. A formal model of models	38
3.3. Modeling complex systems	41
4.1. Emergence from a mosaic	45
4.2. Central Limit Theorem	47
4.3. Beyond disorganized complexity	49
4.4. Gliders in the Game of Life	52
5.1. Modeling and simulation	68
5.2. Active Nonlinear Testing (ANTs)	73
7.1. Tree production with homogeneous, fixed rules	103
7.2. Mean growth rate with heterogeneous adaptation	106
9.1. A Loop network	156
9.2. Dynamics of a Loop network	157
9.3. A Pack network	158
9.4. Two-Pack dynamics	160
9.5. Graphical representation of resulting avalanche size	173
10.1. Two sample automata	179
10.2. The "theory of evolution"	181
10.3. A genetic algorithm	182
10.4. Representing a face	183
10.5. Evolving communication	194
10.6. Cyclic cooperation under communication	195
10.7. Predicted cooperative epochs	196
10.8. A strategic ecology	197
11.1. A simple organization	203
12.1. Simple trading strategies dominated the tournament	215
12.2. Rugged landscapes	216
12.3. Political landscapes and platform search	218
12.4 Coevolution and learning	219

Tables

5.1.	Computation as theory	67
6.1.	Modeling potential	79
7.1.	The Eightfold Way	94
7.2.	A simple Forest Fire model	103
7.3.	Heterogeneous adaptation	106
7.4.	Optimal growth rate distribution	108
7.5.	A simple cellular automaton	111
8.1.	A simple behavioral rule	116
8.2.	Dynamics of Rule 22	117
8.3.	Copy-left rule under different initial conditions	119
8.4.	Social symmetries in rule tables	121
	Symmetry constrained social rules	122
	A nearest-neighbor majority rule	124
8.7.	Majority rule ($k = 3$) with synchronous updating	125
	Majority rule ($k = 3$) equilibria versus updating	126
8.9.	Average number of equilibrium blocks	126
	Majority rule ($k = 3$) with mistakes	129
	Rule 110	131
8.12.	Neighbors of Rule 110	131
8.13.	λ-Distribution over chaotic rules	133
8.14.	λ̂-Distribution over chaotic rules	133
8.15.	Relevant rule table for Rule 46	134
8.16.	Classes and behavior	136
9.1.	Rover dynamics for $N = 10$	142
	Equilibrium cycle length for a single, roving agent	143
	Results from a one-dimensional tipping model	145
	Initial attendance patterns	149
9.5.	Altered attendance patterns	150
	Equilibrium conformity across networks	159
	Segregation across networks	164
	Tipping across networks	164
	Richardson's (1960) data on deaths in warfare,	
	1820–1945	166
9.10.	Self-organized criticality with $T = 6$ and $k = 2$	168
9.11.	Self-organized criticality with $T = 4$ and $k = 1$	169
9.12.	An avalanche with $T = 2$ and $k = 1$	171
9.13.	Avalanche size given landing spot and configuration	173

xvi • Tables

9.14. Theoretical and experimental avalanche distribution	174
10.1. A sample payoff matrix	186
11.1. A sample rule table (Boolean function)	202
11.2. Problem solving for $3n2bH$ organizations	206
11.3. Problem distribution for 3 <i>n</i> 2 <i>bH</i> organizations	208
11.4. Problem accuracy on four-bit inputs	209