Contents

	Preface	xi
1	A few tools from probability theory	1
	1 Introduction	1
	2 The basic notions	2
	3 Distribution and similarity	3
	4 Product probability space	4
	5 The standard model; independence; Steinhaus and Rademacher sequences	4
	6 Integration: the main tools	5
	7 Symmetric random vectors	8
	8 Random functions and analytic sets	9
2	Random series in a Banach space	11
	1 Introduction	11
	2 Summability methods	12
	3 Sums of symmetric random vectors; two lemmas	14
	4 Proof of theorem 1	15
	5 Rademacher series $\sum_{1}^{\infty} \pm u_{n}$	18
	6 A principle of contraction	20
	7 The strong integrability for Rademacher series	23
	8 Exercises	25
3	Random series in a Hilbert space	28
	1 Introduction	28
	2 The Kolmogorov inequality	29
	3 The Paley-Zygmund inequalities	30
	4 Positive random series	32

	_
VI	Contents

	5 Necessary and sufficient conditions for convergence	
	and boundedness	33
	6 Exercises	35
4	Random Taylor series	37
	1 Introduction	37
	2 Singular points	38
	3 The symmetric case	39
	4 The general case	40
	5 Random Taylor series in two complex variables	41
	6 Random Dirichlet series	43
	7 Complements and exercises	44
5	Random Fourier series	46
	1 Introduction	46
	2 Auxiliary results on trigonometric series	47
	3 Rademacher series: the case $\sum_{n=0}^{\infty} x_n^2 = \infty$	49
	4 Rademacher series: the case $\sum_{n=0}^{\infty} x_n^2 < \infty$	51
	5 The general Paley-Zygmund theorem	53
	6 Auxiliary results on series of translates	54
	7 Convergence and boundedness in C or L^{∞}	56
	8 Convergence everywhere; the Billard theorem	58
	9 An application: Fourier coefficients of continuous	
	functions	60
	10 Exercises	63
6	A bound for random trigonometric polynomials	
	and applications	67
	1 Introduction	67
	2 Distribution of $M = P _{\infty}$	68
	3 Applications; a theorem of Littlewood and Salem;	
	Sidon and Helson sets	70
	4 Another application: generalized almost periodic	
	sequences	72
	5 Polynomials with unimodular coefficients	75
	6 Sums of sinuses	78
	7 Exercises	81
7	Conditions on coefficients for regularity	83
	1 Introduction	83
	2 A sufficient condition for (1) $\in C$	84
	3 Estimates for the modulus of continuity (subgaussian	
	case)	86

	Contents	vii
	4 A sufficient condition for $(1) \in \Lambda_{\alpha}$	88
	5 An application	90
	6 Exercises	91
8	Conditions on coefficients for irregularity	93
	1 Introduction	93
	2 Unboundedness: the Paley-Zygmund approach	94
	3 Unboundedness: a particular case	96
	4 Unboundedness: the general case	98
	5 Irregularity almost everywhere	99
	6 Irregularity everywhere	101
	7 Simultaneous inequalities	103
	8 Irregularity everywhere (continued)	104
	9 Divergence everywhere	106
	10 Exercises	108
9	Random point-masses on the circle	109
	1 Introduction	109
	2 Two theorems on Fourier-Stieltjes series	110
	3 Proof of theorem 2	112
	4 An almost everywhere divergent Fourier series	116
	5 Poisson transform of $\sum_{i=1}^{\infty} \varepsilon_{i} m_{i} \delta_{\theta_{i}}$	118
	6 A theorem on conjugate harmonic functions	121
	7 More about the case $\sum_{1}^{\infty} m_{j}^{2} = 1$	124
	8 Exercises	125
10	A few geometric notions	128
	1 Introduction	128
	2 Hausdorff measures and dimensions; Frostman's lemma	129
	3 Energy and capacity; Frostman's theorem	132
	4 ε-covering numbers	134
	5 Helices	135
	6 Quasi-helices; von Koch and Assouad curves	137
	7 More on dimensions	139
	8 Exercises	141
11	Random translates and covering	143
	1 Introduction	143
	2 Covering the circle: a sufficient condition	143
	3 Covering the circle: a sunfector condition	149
	4 Covering the circle: the necessary and sufficient	177
	condition	150

viii Contents

	5 Covering a subset of \mathbb{T}^q by random sets: a necessary	
	6 Covering a subset of \mathbb{T}^q : a sufficient condition; the case of convex g_n	153 156
	7 The case of non-flattening convex g_n ; covering a set	
	of given Hausdorff dimension 8 The case of non-flattening convex g_n (continued);	158
	dimension of the non-covered set	159
	9 Concluding remarks	161
	10 Exercises	162
12	Gaussian variables and gaussian series	165
	1 Introduction	165
	2 Formulas on Fourier transforms	166
	3 Gaussian random variables	168
	4 Some more formulas	171
	5 Around the Borel-Cantelli lemma	172
	6 Transient and recurrent gaussian series	173
	7 Gaussian series in a Banach space	175
	8 Exercises	177
13	Gaussian Taylor series	178
	1 Introduction	178
	2 A review of previous results	179
	3 The range of $F(z)(z < 1)$	180
	4 The radial behavior: a recurrence condition	184
	5 The radial behavior: transience conditions	186
	6 Non-radial behavior: recurrence conditions	189
	7 Transience on circular sets	193
	8 Exercises	195
14	Gaussian Fourier series	197
	1 Introduction	197
	2 Review of known results	199
	3 Capacities and Hausdorff dimension reviewed	199
	4 Range of F	200
	5 The zeros of F	203
	6 A definition of $\delta^{(q)}(F)$	207
	7 The Malliavin theorem on spectral synthesis	209
	8 Exercises	210

Contents	ix

15	Boundedness and continuity for gaussian processes	211
	1 Introduction	211
	2 Slepian's lemma	213
	3 Marcus and Shepp's theorem; the Pisier algebra	215
	4 Dudley's theorem	218
	5 Fernique's theorem	221
	6 Non-gaussian Fourier series	226
	7 Exercises	231
16	The brownian motion	233
	1 Introduction	233
	2 The Wiener process	233
	3 The Fourier-Wiener series	235
	4 More on local properties	237
	5 Stopping times, polar sets and newtonian capacity	242
	6 Self-crossing	245
17	Brownian images in harmonic analysis	250
	1 Introduction	250
	2 Brownian images	251
	3 Brownian image of a measure; proof of theorem 1	253
	4 Arithmetical properties of brownian images; proof of	
	theorem 2	255
	5 Image of a measure by a gaussian Fourier series	257
	6 A construction of H. Cartan; proof of lemma 6	258
	7 A generalization of theorems 1 and 2	260
	8 Exercises	261
18	Fractional brownian images and level sets	263
	1 Introduction	263
	2 The gaussian processes (n, d, γ)	264
	3 Fractional brownian image of a measure; new Salem sets	265
	4 Fractional brownian images (continued); occupation	
	density	267
	5 Level sets	272
	6 Uniqueness and continuity of $\delta(X-x)$	275
	7 Graphs	278
	8 Exercises	279
	Notes	281
	Bibliography	290
	Index	301