CONTENTS

Danksagung	4
1. Introduction	6
Organisation	10
Notations and conventions	11
2. Triangulated categories	12
3. Graded rings and modules	15
3.1. Graded-commutative rings	17
4. Group and Tate cohomology rings	19
4.1. Group cohomology rings	20
4.2. Tate cohomology rings	21
5. The Hochschild Cohomology of a graded ring	22
5.1. Functoriality	23
5.2. The graded Bar resolution	24
5.3. Ring structure	24
5.4. The cup product pairing	26
6. Differential graded algebras and their derived categories	27
6.1. Differential graded algebras and modules	27
6.2. $\mathcal{K}(A)$ as stable category of a Frobenius category	29
6.3. Homotopically projective and homotopically injective dg modules	29
6.4. Derived functors	31
6.5. Cofibrant differential graded algebras	32
7. A_{∞} -algebras	33
8. Localisation in triangulated categories	37
8.1. Categories of fractions	37
8.2. Localisation functors	38
8.3. Quotient categories	38
8.4. Localisation sequences	39
8.5. Recollements	40
8.6. Cohomological localisation	41
9. Realising smashing localisations by morphisms of dg algebras	44
9.1. Construction of a dg algebra morphism	45
9.2. The p-localisation of a dg algebra	51
10. Realisability	54
10.1. A local obstruction for realisability	54
10.2. Realisability and dg algebras	56
10.3. A global obstruction for realisability	57
11. Realisability and p-localisation	57
11.1. A motivation for p-localisation	58
11.2. Realisability is a local property	59
12. Localising the global obstruction	62
12.1. A map of Hochschild cohomology rings	63
12.2. Local-global principle for the global obstruction	65
13. Comparing realisability over group and Tate cohomology	68
13.1. Local realisability	68
13.2. Examples for the global obstruction	69

REALISA	BILITY	ANT	LOCAL	ISATION

13.3.	Lifting $H^*(G,k) \to \hat{H}^*(G,k)$ to a morphism of dg algebras	74
13.4.	Relating the global obstructions of $H^*(G, k)$ and $\hat{H}^*(G, k)$	76
Refere	nces	78