CONTENTS

Introduction	1
Chapter I — Differentiable Manifolds	
§1. Differentiable manifolds	5
§2. The derivative	13
§3. Immersions and submersions	14
§4. Submanifolds	16
§5. Regular values	17
§6. Transversality	17
§7. Partitions of unity	18
Chapter II - Foliations	
§1. Foliations	21
§2. The leaves	31
§3. Distinguished maps	32
§4. Plane fields and foliations	35
§5. Orientation	36
§6. Orientable double coverings	37
§7. Orientable and transversely orientable foliations	38
Notes to Chapter II	41
Chapter III - The Topology of the Leaves	
§1. The space of leaves	47
§2. Transverse uniformity	48
§3. Closed leaves	51
§4. Minimal sets of foliations	52
Notes to Chapter III	53

Chapter IV - Holonomy and the Stability Theorems	
§1. Holonomy of a leaf	62
§2. Determination of the germ of a foliation in a neighborhood of a leaf by the the holonomy of the leaf	67
§3. Global trivialization lemma	69
§4. The local stability theorem	70
§5. Global stability theorem. Transversely orientable case	72
§6. Global stability theorem. General case Notes to Chapter IV	78 80
Chapter V - Fiber Bundles and Foliations	
§1. Fiber bundles	87
§2. Foliations transverse to the fibers of a fiber bundle	91
§3. The holonomy of F	93
§4. Suspension of a representation	93
§5. Existence of germs of foliations	100
§6. Sacksteder's Example	102
Notes to Chapter V	106
Chapter VI - Analytic Foliations of Codimension One	
§1. An outline of the proof of Theorem 1	116
§2. Singularities of maps $f: \mathbb{R}^n \to \mathbb{R}$	118
§3. Haefliger's construction	121
§4. Foliations with singularities on D^2	123
§5. The proof of Haefliger's theorem	127
Chapter'VII - Novikov's Theorem	
§1. Sketch of the proof	131
§2. Vanishing cycles	133
§3. Simple vanishing cycles	138
§4. Existence of a compact leaf	140
5. Existence of a Reeb component	149
§6. Other results of Novikov	152
§7. The non-orientable case	157
Chapter VIII - Topological Aspects of the Theory of Group Actions	
§1. Elementary properties	159
§2. The theorem on the rank of S ³	163
63 Generalization of the rank theorem	165

 §4. The Poincaré-Bendixson theorem for actions of R² §5. Actions of the group of affine transformations of the line 	168 171
Appendix - Frobenius' Theorem	
§1. Vector fields and the Lie bracket	175
§2. Frobenius' theorem	182
§3. Plane fields defined by differential forms	184
Exercises	189
Bibliography	199
Index	203