Contents

Chapter 1. Int	troduction	1
1. Topologi	ical aspects of Hamiltonian group actions	1
	nian cobordism	4
3. The lines	arization theorem and non-compact cobordisms	5
4. Abstract	moment maps and non-degeneracy	7
	ntum linearization theorem and its applications	8
6. Acknowl	edgements	10
Part 1. Cob	ordism	13
Chapter 2. Ha	amiltonian cobordism	15
1. Hamilton	nian group actions	15
2. Hamilton	nian geometry	21
3. Compact	t Hamiltonian cobordisms	24
4. Proper F	Hamiltonian cobordisms	27
5. Hamilton	nian complex cobordisms	29
Chapter 3. Al	ostract moment maps	31
1. Abstract	moment maps: definitions and examples	31
2. Proper a	lbstract moment maps	33
3. Cobordis	sm	34
	amples of proper cobordisms	37
Cobordis	sms of surfaces	39
6. Cobordis	sms of linear actions	42
Chapter 4. Th	ne linearization theorem	45
1. The simp	plest case of the linearization theorem	45
2. The Han	niltonian linearization theorem	47
3. The lines	arization theorem for abstract moment maps	51
	orus actions	52
5. The righ	t-hand side of the linearization theorems	56
6. The Duis	stermaat-Heckman and Guillemin-Lerman-Sternberg formulas	58
Chapter 5. Re	eduction and applications	63
, , ,	mplectic reduction	63
	on for abstract moment maps	65
	stermaat–Heckman theorem	69
4. Kähler re		72
5. The com	plex Delzant construction	73
6. Cobordis	sm of reduced spaces	81

vi CONTENTS

7.	Jeffrey-Kirwan localization	82
8.	Cutting	84
Part	2. Quantization	87
Chapt	er 6. Geometric quantization	89
1.	Quantization and group actions	89
2.	Pre-quantization	90
3.	Pre-quantization of reduced spaces	96
4.	Kirillov–Kostant pre-quantization	99
5.	Polarizations, complex structures, and geometric quantization	102
6.	Dolbeault Quantization and the Riemann–Roch formula	110
7.	Stable complex quantization and Spin ^c quantization	113
8.	Geometric quantization as a push-forward	117
Chapt	er 7. The quantum version of the linearization theorem	119
1.	The quantization of $\mathbb{C}^{\mathbf{d}}$	119
2.	Partition functions	125
3.	The character of $\mathcal{Q}(\mathbb{C}^{\mathbf{d}})$	130
4.	A quantum version of the linearization theorem	134
Chapt	er 8. Quantization commutes with reduction	139
1.	Quantization and reduction commute	139
2.	Quantization of stable complex toric varieties	141
3.	Linearization of $[Q,R]=0$	145
4.	Straightening the symplectic and complex structures	149
5.	Passing to holomorphic sheaf cohomology	150
6.	Computing global sections; the lit set	152
7.	The Čech complex	155
8.	The higher cohomology	157
9.	Singular $[Q,R]=0$ for non-symplectic Hamiltonian G -manifolds	159
10.	Overview of the literature	162
Part	3. Appendices	165
Apper	ndix A. Signs and normalization conventions	167
1.	The representation of G on $C^{\infty}(M)$	167
2.	The integral weight lattice	168
3.	Connection and curvature for principal torus bundles	169
	Curvature and Chern classes	171
5.	Equivariant curvature; integral equivariant cohomology	172
Apper	ndix B. Proper actions of Lie groups	173
1.	Basic definitions	173
2.	The slice theorem	178
3.	Corollaries of the slice theorem	182
4.	The Mostow-Palais embedding theorem	189
5.	Rigidity of compact group actions	191
Apper	ndix C. Equivariant cohomology	197
i	The definition and basic proporties of equivariant ashemology	107

CONTENTS vii

2. Reduction and cohomology	201
3. Additivity and localization	203
4. Formality	205
5. The relation between $\mathbf{H}_{\mathbf{G}}^*$ and $\mathbf{H}_{\mathbb{T}}^*$	208
6. Equivariant vector bundles and characteristic classes	211
7. The Atiyah–Bott–Berline–Vergne localization formula	217
8. Applications of the Atiyah–Bott–Berline–Vergne localization formula	222
9. Equivariant homology	226
Appendix D. Stable complex and Spin ^c -structures	229
1. Stable complex structures	229
2. Spin ^c -structures	238
3. Spin ^c -structures and stable complex structures	248
Appendix E. Assignments and abstract moment maps	257
1. Existence of abstract moment maps	257
2. Exact moment maps	263
3. Hamiltonian moment maps	265
4. Abstract moment maps on linear spaces are exact	269
5. Formal cobordism of Hamiltonian spaces	273
Appendix F. Assignment cohomology	279
1. Construction of assignment cohomology	279
2. Assignments with other coefficients	281
3. Assignment cohomology for pairs	283
4. Examples of calculations of assignment cohomology	285
5. Generalizations of assignment cohomology	287
Appendix G. Non-degenerate abstract moment maps	289
1. Definitions and basic examples	289
2. Global properties of non-degenerate abstract moment maps	290
3. Existence of non-degenerate two-forms	294
Appendix H. Characteristic numbers, non-degenerate cobordisms, and	204
non-virtual quantization	301
1. The Hamiltonian cobordism ring and characteristic classes	301
2. Characteristic numbers	304
3. Characteristic numbers as a full system of invariants	305
4. Non-degenerate cobordisms	308
5. Geometric quantization	310
Appendix I. The Kawasaki Riemann–Roch formula	315
1. Todd classes	315
2. The Equivariant Riemann-Roch Theorem	316
3. The Kawasaki Riemann–Roch formula I: finite abelian quotients	320
4. The Kawasaki Riemann-Roch formula II: torus quotients	323
Appendix J. Cobordism invariance of the index of a transversally elliptic	
operator by Maxim Braverman	327
1. The Spin ^C -Dirac operator and the Spin ^C -quantization	327
2 The summary of the results	329

viii CONTENTS

3.	Transversally elliptic operators and their indexes	331
4.	Index of the operator $\mathbf{B}_{\boldsymbol{a}}$	333
5.	The model operator	335
6.	Proof of Theorem 1	336
Bibliography		339
Index		349