Contents Preface | | duction; Differential Equations
rst Order | | |-----|---|----| | 1.1 | Introduction, 1 | | | 1.2 | Some Elementary Facts about Differential Equations, 4 | | | 1.3 | The Linear Equation—The Initial-Value Problem, 12 | | | 1.4 | More on Linear Equations—The General Solution, 19 | | | 1.5 | Nonlinear Equations—Separation of Variables, 23 | | | 1.6 | Exact Nonlinear Differential Equations, 31 | | | 1.7 | Some Special Techniques—A Historical Note, 40 | | | 1.8 | Numerical Solutions—An Introduction, 45 | | | | r Equations
der Two and Higher | 50 | | 2.1 | Introductory Remarks, 56 | | | 2.2 | The Euclidean Plane and Solution Spaces, 62 | | vii iv CONTENTS 5 | 2.3 The Solution Space for y" + a₁y' + a₀y = 0, 69 2.4 The Nonhomogeneous Equation of Order Two, 79 2.5 The Homogeneous Equation with Constant Coefficients, 85 2.6 Constant Coefficient Equations of Higher Order, 91 2.7 The Nonhomogeneous Equation with Constant Coefficients, 97 2.8 Some Applications, 103 2.9 Solving the Second Order Equation Numerically, 117 *2.10 Vector Spaces and Related Ideas, 124 | | | | | | |---|---|-----|--|--|--| | More | on Numerical Techniques | 134 | | | | | 3.1 | Introduction, 134 | | | | | | 3.2 | Introduction to Single-Step Procedures, 139 | | | | | | 3.3 | Runge-Kutta Schemes of Higher Order, 145 | | | | | | *3.4 | Predictor-Corrector Methods, 151 | | | | | | 3.5 | Differential Equations of Higher Order and Systems, 156 | | | | | | Introd | luction to Power Series Methods | 164 | | | | | 4.1 | Introduction, 164 | | | | | | 4.2 | Second Order Linear Equations—Examples, 172 | | | | | | 4.3 | Some General Results—Ordinary Points, 178 | | | | | | 4.4 | Singular Problems—Euler Equations, 183 | | | | | | 4.5 | Solutions Near a Regular Singular Point, 189 | | | | | | 4.6 | Bessel's Equation, 196 | | | | | | *4.7 | Some Computational Considerations, 204 | | | | | | Elemo | ents of the Laplace Transform | 211 | | | | | 5.1 | Introduction, 211 | | | | | | 5.2 | Definitions and Examples, 213 | | | | | | 5.2 | Some Key Properties, 220 | | | | | | 5.4 | The Laplace Transform and Differential Equations, 229 | | | | | | 5.5 | The Convolution Theorem—Green's Functions, 235 | | | | | | *5.6 | | | | | | | *5.7 | Application to Other Types of Problems, 243 | | | | | | 3.7 | Unit Impulses—the Delta Function, 250 | | | | | CONTENTS | 6 | Line | ar Systems | 260 | |---|-------|--|-----| | | 6.1 | Introduction, 260 | | | | 6.2 | Some Facts from Linear Algebra, 265 | | | | 6.3 | The General Homogeneous System, 277 | | | | 6.4 | The General Nonhomogeneous Equation, 285 | | | | 6.5 | The Homogeneous Equation with Constant Coefficients, 293 | | | | 6.6 | When the Eigenvectors Are Deficient, 302 | | | | | ndix—
Existence and Uniqueness Theorems | 314 | | | Answe | ers to Problems | 325 | | | Index | | 339 |