Contents

Pref	âce
Cha	apter I: Basic Concepts
§ 1	Equations for oscillatory systems 1.1 First order systems 1.2 Linear periodic systems 1.3 Higher order systems 2
§ 2	The shift operator and first return function
	Integral and integrofunctional operators for periodic problem 3.1 Completely continuous operators 3.2 Spaces of functions 3.3 Linear integral operators and their properties 3.4 A superposition operator 3.5 The Hammerstein operator 3.6 Integral and integrofunctional equations 3.7 The Fréchet derivative 3.8 Periodic problem for systems of automatic control 11 12 13 14 15 16 17
	The harmonic balance method
	The method of mechanical quadratures
	The collocation method

viii Contents

8 /	The method of finite differences	33
	7.1 Formulae of numeric differentiation	33
	7.2 Discretization of the differential equations	33
	7.3 Reduction of the method of finite differences to the Galerkin method	34
88	Factor methods	37
30	8.1 Discrete convergence	
	8.2 Discrete compactness	37
		38
	8.3 Discrete convergent sequences of operators	38
	8.4 The method of mechanical quadratures	39
	8.5 The method of finite differences	40
Ch	apter II: Existence theorems for oscillatory regimes	43
§ 1	Smooth manifolds and differential forms	43
	1.1 Smooth manifolds	43
	1.2 Tangent spaces	44
	1.3 Orientation	46
	1.4 Manifolds with boundaries	46
	1.5 Exterior forms	47
	1.6 Outer product	47
		48
	1.8 Integration of differential forms	49
	1.9 Outer differentiation	51
82		
8 2	Degree of a mapping	51
	2.1 The Sard theorem	52
		52
	2.3 The degree of a mapping	53
		57
		60
	2.6 Properties of the degree of a mapping	61
	2.7 The degree of continuous mappings	64
§ 3	Rotation of vector fields	65
	3.1 Vector fields	65
		65
	3.3 Rotation of a vector field	66
	2.4.7	66
		υO
§ 4	Completely continuous vector fields	73
	4.1 Finite-dimensional approximations	73
		75
	40 - 4	77

Contents	ix

§ 5	Fixed point principles and solution of operator equations	80
	5.1 The Brouwer theorem	80
	5.2 The Browder theorem	81
	5.3 The Schauder theorem	86
	5.4 The Leray–Schauder principle	87
	5.5 The contraction mapping principle	88
	5.6 Operator equations in products of Banach spaces	90
	•	
§ 6	Forced oscillations in systems with weak nonlinearities	94
	6.1 Systems with bounded nonlinearities	94
	6.2 Systems of automatic control	95
§ 7	Oscillations in systems with strong nonlinearities. Directing functions	
	method	98
	7.1 Points of <i>T</i> -irreversibility	98
	7.2 Directing functions	100
	7.3 The full system of directing functions	103
	7.4 Regular directing functions	105
	7.5 Construction of directing functions	105
	The Constitution of Greening Landing	
Ch	apter III: Convergence of numerical procedures	107
§ 1	Projection methods	107
	1.1 The Galerkin method procedure	107
	1.2 The nondegenerate case	107
	1.3 Topological principle of convergence of the Galerkin method	111
	1.4 Convergence of the Galerkin method with perturbations	113
	1.5 Projection procedures in the Hilbert space	115
	1.6 Estimates of the convergence rate	117
	1.0 Estimates of the convergence rate	
§ 2	Factor methods	119
	2.1 Regular and compact convergence	119
	2.2 The a posteriori estimate lemma	119
	2.3 The convergence of the factor method (the nondegenerate case) .	121
	2.4 The topological principle of convergence of the factor method	124
	2.5 Convergence of the factor method for equations with a linear main	
	part	129
	2.6 Additional remarks	130
§ 3	Convergence of the harmonic balance method and the collocation	
	method in the problem of periodic oscillations	148
	3.1 Local convergence of the harmonic balance method	148
	3.2 The topological principle of convergence	153
	3.3 Convergence of the harmonic balance method in the case of	
	nondifferentiable nonlinearities	154

x Contents

	3.4 Convergence of the harmonic balance method in the problem of	
	forced oscillations of the systems of automatic control	156
	3.5 Local convergence of the collocation method	158
	3.6 A global convergence of the collocation method	162
	3.7 The harmonic balance and the collocation methods for periodic	
	oscillations of multi-circuit systems of automatic control	164
	3.8 The feasibility of the harmonic balance and the collocation methods	167
2 1	Convergence of the method of machanical quadratures	171
94	Convergence of the method of mechanical quadratures	
	4.1 Convergent quadrature processes	171
	4.2 Local convergence of the method of mechanical quadratures	174
	4.3 The global convergence of the method of mechanical quadratures	179
	4.4 Convergence of the method of mechanical quadratures for general	101
	nonlinear systems	181
§ 5	Convergence of the method of finite differences	188
	5.1 Convergent formulae of numeric differentiation	188
	5.2 Discretization of differential equations	190
	5.3 Network spaces and connecting mappings	191
	5.4 A convergence theorem for differentiable nonlinearities	192
	5.5 Auxiliary statements	192
	5.6 Proof of Theorem 5.1	194
	5.7 The topological principle of convergence	197
	5.8 Additional remarks	198
§ 6	Numerical procedures of approximate construction of oscillatory regimes	
	in autonomous systems	198
	6.1 Specific features of the problem	198
	6.2 The method of the functional parameter	199
	6.3 The method of additional constraints	201
	6.4 The degeneracy dimension	205
	6.5 The convergence theorem	205
	6.6 The harmonic balance method in search for oscillations of	
	autonomous systems of automatic control	208
	6.7 The functional characteristic	213
	6.8 The topological principle of convergence	214
	6.9 Additional remarks	215
87	Affinity theory	215
δ '	7.1 Formulation of the problem	215
		217
	7.2 Domains with the same core	217
	7.4 The affinity theorem for nonautonomous systems of automatic	217
	control	220
	7.5 Autonomous systems. The topological index of a cycle	220

Contents	X1
Contents	

7.6 Affinity theorem for autonomous7.7 Additional remarks	systems of automatic control 224
§ 8 Effective convergence criteria for nu 8.1 Use of affinity theory for proving	merical procedures
procedures	235
8.2 The directing functions method a procedures	
8.3 Stability of oscillatory regimes a	and convergence of numerical
§ 9 Effective estimates of the convergence	ce rate for the harmonic balance
method	
9.1 A posteriori error estimates .	240
9.2 Quasi-linear systems	241
9.3 Systems of automatic control	245
9.4 Stability analysis for the periodi	c solution 248
Notes on the References	
References	
Index	27