CONTENTS

CHAPTER I

Sectio	continuous functions	Page
	Introduction	1
1.	Approximation by trigonometric sums	2
2.	Approximation by polynomials	13
3.	Degree of convergence of Fourier series	18
4.	Degree of convergence of Legendre series	25
	CHAPTER 11	
FU	DISCONTINUOUS FUNCTIONS; UNCTIONS OF LIMITED VARIATION; ARITHMETIC MEA	NS
	Introduction	33
1.		
	continuity over part of a period	33
2.	Convergence of Fourier series under hypothesis of	
	limited variation	43
3.	Degree of convergence of Fourier series under hypo-	
	theses involving limited variation	48
4.	Convergence of the first arithmetic mean	57
ā.	Degree of convergence of the first arithmetic mean	60
6.	Convergence of Legendre series under hypothesis of	
	continuity over a part of the interval	66
7.	Degree of convergence of Legendre series under	
	hypotheses involving limited variation	71
	CHAPTER III	
	THE PRINCIPLE OF LEAST SQUARES AND ITS GENERALIZATIONS	
1	Convergence of trigonometric approximation as re-	
1.	lated to integral of square of error	77
	vii	• •

CONTENTS

Sect	· · · · ·	Page
2.	and of the continuous of approximation as the	- 46,
	lated to integral of mth power of error	86
3.	Proof of an existence theorem	89
4.	Polynomial approximation	92
5.	Polynomial approximation over an infinite interval	101
	CHAPTER IV	
	TRIGONOMETRIC INTERPOLATION	
1. 2.	Convergence and degree of convergence under hypo-	
3.	theses of continuity over entire period	119
	of a period	123
4. 5.	- 92-20 of convergence under involutions.	130
	limited variation	134
6.	Formula of interpolation analogous to the Feiér	
7.	mean	142
٠.	Polynomial interpolation	148
	CHAPTER V	
Γ	NTRODUCTION TO THE GEOMETRY OF FUNCTION SPACE	Έ
1.	The notions of distance and orthogonality	149
2.	The general notion of angle: geometric interpretation	
	of coefficients of correlation	154
3.	Coefficients of correlation in an arbitrary number	
,	of variables	163
4. -	The geometry of frequency functions	169
5,	Vector analysis in function space	173