Contents | | | Page | |--------------|--|----------| | Preface | | | | Part | I: PRESENTATION OF NUMERICAL METHODS | 1 | | 1. | Finite-Difference Methods for Boundary-Value Problems | 3 | | 1.1. | Sample Problems | 3 | | 1.2. | Ordinary Differential Equations | 5 | | 1.3. | Beam Problem | 10 | | | Value Problem Finite-Difference Approximations for Two-Dimensional | 13 | | | Elliptic Equations | 16 | | | References | 19 | | 2. | Projection Methods for Variational Equations | 20 | | 2.1. | Basic Properties of Variational Equations and Sample | | | | Problems | 21 | | 2.2. | 1 | 28 | | 2.3. | | 35 | | 2.4. | Galerkin Methods and the Method of Least Squares Projection Methods for Nonlinear Problems | 38
44 | | | References | 50 | | 7 | Ammanian Makhala fan Internal Fanstiana of the | | | 3. | Approximation Methods for Integral Equations of the Second Kind | 51 | | 7) | | 51 | | 3.1.
3.2. | | 56 | | 3.3. | · · | 60 | | 3.4. | | 66 | | | References | 73 | | 4. | Approximation Methods for Initial Value Problems in Partial Differential Equations | 74 | | 4.1. | Difference Methods for the Heat Equation | 75 | | 4.2. | · · | 85 | | | Numerical Methods for the Wave Equation | 91 | | 4.4.
4.5. | | 101 | | | of Approximation Methods | 109 | | | References | 119 | | | Page | |--|---------------------------------| | Part II: CONVERGENCE THEORY | 121 | | 5. The Concepts of Discrete Convergence and Discrete Approximations | 123 | | 5.1. Definitions, Basic Properties, and First Examples 5.2. Restriction and Embedding Operators 5.3. Discrete Uniform Convergence of Continuous Functions 5.4. Discrete Approximations of L ^p -Spaces and Weak Convergence of Measures | 124
127
132 | | References | 151 | | 6. Discrete Convergence of Mappings and Solutions of Equations | 152 | | 6.1. Continuity and Differentiability of Mappings and Their Inverses 6.2. Stability and Inverse Stability of Sequences of Mappings 6.3. Consistency and Discrete Convergence of Mappings 6.4. Discrete Convergence of Solutions and Biconvergence References | 153
161
168
173
179 | | 7. Compactness Criteria for Discrete Convergence | 181 | | 7.1. Discrete Compact Sequences of Elements 7.2. A-Regular and Regularly Convergent Mappings 7.3. Discrete Compact Sequences of Mappings and Biconvergence | 182
186 | | for Equations of the Second Kind 7.4. Projection Methods for the Approximate Solution of Nonlinear Fixed Point Equations | 194
202 | | References | 206 | | Part III: CONVERGENCE ANALYSIS FOR APPROXIMATE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS AND INTEGRAL EQUATIONS | 207 | | 8. Convergence of Finite-Difference Methods for Boundary-
Value Problems | 209 | | 8.1. Convergence of Difference Methods for Ordinary Differential Equations Via Maximum Principles 8.2. Convergence of Difference Methods for Ordinary | 210 | | Differential Equations Via Compactness Arguments 8.3. Convergence of the Five-Point Difference Approximation | 224 | | for Poisson's Equation | 232 | | References | 235 | | 9. <u>Biconvergence for Projection Methods Via Variational Principles</u> | 236 | | 9.1. Approximability | 237 | | 9.2. Stability, Inverse Stability, and Biconvergence for Linear, Problems 9.3. Biconvergence for Nonlinear Problems | 238
244 | | References | 250 | | | | Page | |----------|--|-------------------| | | Convergence of Perturbations of Integral Equations of | | | <u> </u> | The Second Kind | 251 | | | Statement of the Problem and Consistency
Equidifferentiability
Biconvergence | 252
257
262 | | | References | 265 | | Part I | V: INVERSE STABILITY, CONSISTENCY AND CONVERGENCE FOR INITIAL VALUE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS | 266 | | | Inverse Stability and Convergence for General Discrete-Time Approximations of Linear and Nonlinear Initial Value | | | | roblems | 268 | | 11.2. | Statement of the Problem and Differentiability Inverse Stability Consistency and Convergence | 270
287
294 | | | References | 305 | | 12. 5 | Special Criteria for Inverse Stability | 306 | | 12.1. | Linear Finite-Difference Methods with Positivity | 307 | | 12.2. | Properties The von Neumann Condition | 319 | | | Inverse Stability of Galerkin Methods | 335 | | | Inverse Stability of Nonlinear Methods | 342 | | | References | 353 | | 13. | 13. Convergence Analysis of Special Methods | | | 13.1. | Consistency and Convergence of Finite-Difference Approximations | 355 | | 13.2. | * • · | 368 | | | References | 384 | | BIBLIC | BIBLIOGRAPHY | | | GLOSSA | GLOSSARY OF SYMBOLS | | | SUBJE | SUBJECT INDEX | |