PR	EFACE	Х
AB	STRACTS	1
İ	PART I. BEST APPROXIMATIONS, OPTIMAL QUADRATE AND MONOSPLINES	URE
	a Class of Best Non-linear Approximation Problems and	
	tended Monosplines	19
Sar	nuel Karlin	
§1	Formulation and description of main results.	19
2	Bounds on the number of zeros of extended monosplines.	27
3	The fundamental theorem of algebra for extended monosplines.	36
4	The improvement theorem.	37
5	Existence of minimizing extended splines.	44
6	Proof of the characterization of the extremum, as described	47
7	in Theorem 1.3 for $1 .Characterization and uniqueness in the case of p = \infty$	5 1
,	in Theorem 1.3.	51
8	The total positivity nature of the Bergman and Szegő reproducing	55
	kernels.	55
9	An equivalent formulation of the best non-linear approximation problem (1.4) in L^2 .	59
	Global Improvement Theorem for Polynomial Monosplines	67
San	nuel Karlin	
§1	Statement of theorem and ramifications.	67
2	Some preliminaries.	72
3	Proof of Theorem 3.	74
App	olications of Representation Theorems to Problems of	
Che	Chebyshev Approximation with Constraints	
	in Pinkus	83
§1	Introduction.	83
2	Proof of Theorem 2 and extensions of Theorem 1.	87

3	Applications of Theorem 2.	89
4	Representation theorems with interpolation, and	
	interpolatory approximation.	94
5	Representation theorems with boundary constraints.	98
6	Applications of representation theorems with boundary conditions.	103
	ussian Quadrature Formulae with Multiple Nodes	113
Sa	muel Karlin and Allan Pinkus	
§1		113
2		121
3	Extensions and remarks.	137
	Extremal Property of Multiple Gaussian Nodes	143
	muel Karlin and Allan Pinkus	
§1	Formulation and statement of results.	143
2		149
3	Proof of extremal property (Theorem D).	154
	PART II. CARDINAL SPLINES AND RELATED MATTER	RS
	cillation Matrices and Cardinal Spline Interpolation	163
	arles A. Micchelli	
§1	Introduction.	163
2	· - · · · · · · · · · · · · · · · · · ·	168
3	.	184
4	An eigenvalue problem.	189
	rdinal L-Splines	203
Ch	arles A. Micchelli	
§1	Introduction.	203
2	An eigenvalue problem.	205
3	Some special \mathcal{L} -splines.	220
4		224
5	Some applications of the Euler and Bernoulli \mathcal{L} -spline.	228
6	Polynomial spline interpolation on a geometric mesh.	241
	Micchelli's Theory of Cardinal \mathcal{L} -Splines	251
	Schoenberg	
§1	Introduction.	251
2	The class $S(\mathcal{L},\eta)$ of cardinal \mathcal{L} -splines.	253
3	The B-splines.	255

4	The behavior of the roots of the equation (3.4).	257
5	A proof of Theorem 2.	261
6	Micchelli's cardinal interpolation problem by elements of $S(\mathcal{L}, \eta)$.	266
7	Proof of sufficiency in Theorem 4.	269
8	A few examples.	273
On	The Remainders and the Convergence of Cardinal Spline	
Int	erpolation for Almost Periodic Functions	277
I.J.	Schoenberg	2,,
§1	Introduction.	277
2	The kernel of the remainder and some of its properties.	277
3	Further properties of the kernel $K_{2m-1}(x,t)$.	283
4	The cardinal spline interpolation formula with remainder.	286
5	A few special choices of $f(x)$.	288
6	Applications.	291
7	Definitions and known results.	295
8	Katznelson's definition and lemma.	297
9	Two applications of Katznelson's lemma.	298
10	A conjecture.	302
	PART III. INTERPOLATION WITH SPLINES	
Into	erpolation by Splines with Mixed Boundary Conditions	305
San	nuel Karlin and Allan Pinkus	
§1	Introduction.	305
2	Proof of Theorem 1.	309
3	Examples of boundary conditions satisfying Postulate J.	314
4	Total positivity properties of Green's function for mixed	318
	boundary conditions.	
Div	ided Differences and Other Non-linear Existence Problems	
at E	Extremal Points	327
San	nuel Karlin and Allan Pinkus	
§1	Preliminaries and statement of main results.	327
2	Polynomials with prescribed kth order divided differences:	027
	Proof of Theorem 1.	330
3	Extensions of Theorem 1 to various classes of spline	223
	functions and Chebyshev systems.	339
4	A general formulation and applications.	345
5	Open problems.	349

PART IV. GENERALIZED LANDAU AND MARKOV TYPE INEQUALITIES AND GENERALIZED PERFECT SPLINES.

Notes on Spline Function VI. Extremum Problems of the			
Landau-Type for the Differential Operators D ² ± 1			
I.J.	Schoenberg		
§0	Introduction.	353	
1	The differential operator $D^2 + 1$.	354	
2	The differential operator $D^2 - 1$.	359	
3	Weak extremum functions in Theorem 3.	364	
Osc	cillatory Perfect Splines and Related Extremal Problems	371	
San	nuel Karlin		
§1	Introduction and statement of main results.	371	
2	The construction of certain generalized perfect splines		
	with special oscillatory properties.	385	
3	Some special oscillatory perfect splines.	394	
4	Uniqueness criteria, proof of Theorem 4.1 and related matters.	396	
5	A special one parameter family of equi-oscillation perfect splines.	403	
6	Results on equi-oscillating perfect splines with variable interval		
	length.	412	
7	Some symmetry considerations.	417	
8	Some extremal properties of the equi-oscillating perfect splines.	418	
9	Perfect L-splines.	423	
10	Equi-oscillating perfect L-splines on $[0,\infty)$ and on $(-\infty,\infty)$		
	with an infinite number of knots.	426	
11	Perfect L-splines for n-th order differential operators with		
	constant coefficients on the half line and sharp Landau		
	Kolmogorov type inequalities.	432	
12	Equi-oscillating perfect L-splines for the full line where L is		
	a differential operator with constant coefficients.	443	
13	Landau Kolmogorov type inequalities for certain convolution operators.	453	
Gen	neralized Markov Bernstein Type Inequalities for Spline		
Functions		461	
	nuel Karlin	701	
§1	Introduction and statement of main results.	461	
2	Markov inequalities for perfect splines: Proof of Theorem 1.	469	
3	Markov inequalities for one-sided and two-sided "Cardinal splines".	476	

Son	ne One-sided Numerical Differentiation Formulae and	
Applications		485
San	nuel Karlin	
§0	Introduction.	485
1	The finite interval case.	486
2	The one-sided infinite interval case.	494
3	Remarks.	499