Contents

CHAPTER I · INTRODUCTION

1.1	Determinants	1
1.2	Solution of Linear Systems of Equations	2
1.3	Linear Vector Spaces	3
1.4	The Hierarchy of Functions	4
1.5	Functions Satisfying a Lipschitz Condition	8
1.6	Differentiable Functions	8
1.7	Infinitely Differentiable Functions	11
1.8	Functions Analytic on the Line	12
1.9	Functions Analytic in a Region	12
1.10	Entire Functions	15
1.11	Polynomials	15
	Linear Functionals and the Algebraic Conjugate Space	16
1.13	Some Assorted Facts	19
	CHAPTER II · INTERPOLATION	
2.1	Polynomial Interpolation	24
2.2	The General Problem of Finite Interpolation	26
2.3	Systems Possessing the Interpolation Property	27
2.4	Unisolvence	31
2.5	Representation Theorems: The Lagrange Formula	33
2.6	Representation Theorems: The Newton Formula	39
2.7	Successive Differences	50
	CHAPTER III · REMAINDER THEORY	
3.1	The Cauchy Remainder for Polynomial Interpolation	56
3.2	Convex Functions	58
3.3	Best Real Error Estimates; The Tschebyscheff Polynomials	60
3.4	Divided Differences and Mean Values	64
3.5	Interpolation at Coincident Points	66
3.6	Analytic Functions: Remainder for Polynomial Interpolation	67
3.7	Peano's Theorem and Its Consequences	69
3.8	Interpolation in Linear Spaces; General Remainder Theorem	75

	CHAPTER IV · CONVERGENCE THEOREMS FOR INTERPOLATORY PROCESSES	
4.1	Approximation by Means of Interpolation	78
4.2	Triangular Interpolation Schemes	79
4.3	A Convergence Theorem for Bounded Triangular Schemes	81
4.4	Lemniscates and Interpolation	83
	Chapter V · Some Problems of Infinite Interpolation	
5.1	Characteristics of Such Problems	95
5.2	Guichard's Theorem	96
5.3	A Second Approach: Infinite Systems of Linear Equations in	
	Infinitely Many Unknowns	97
5.4	Applications of Pólya's Theorem	102
	CHAPTER VI · UNIFORM APPROXIMATION	
6.1	The Weierstrass Approximation Theorem	107
6.2	The Bernstein Polynomials	108
6.3	Simultaneous Approximation of Functions and Derivatives	112
6.4	Approximation by Interpolation: Fejér's Proof	118
6.5	Simultaneous Interpolation and Approximation	121
6.6	Generalizations of the Weierstrass Theorem	122
	CHAPTER VII · BEST APPROXIMATION	
7.1	What is Best Approximation?	128
7.2	Normed Linear Spaces	129
7.3	Convex Sets	134
7.4	The Fundamental Problem of Linear Approximation	136
7.5	Uniqueness of Best Approximation	140
7.6	Best Uniform (Tschebyscheff) Approximation of Continuous	110
	Functions	146
7.7	Best Approximation by Nonlinear Families	152
	CHAPTER VIII · LEAST SQUARE APPROXIMATION	
8.1	Inner Product Spaces	158
8.2	Angle Geometry for Inner Product Spaces	161
8.3	Orthonormal Systems	163
8.4	Fourier (or Orthogonal) Expansions	169
8.5	Minimum Properties of Fourier Expansions	171
8.6	The Normal Equations	175
8.7	Gram Matrices and Determinants	176
8.8	Further Properties of the Gram Determinant	104

	CONTENTS	xiii
8.9 8.10	Closure and Its Consequences Further Geometrical Properties of Complete Inner Product Spaces	188 195
	CHAPTER IX · HILBERT SPACE	
9.1	Introduction	201
9.2	Three Hilbert Spaces	203
9.3	Bounded Linear Functionals in Normed Linear Spaces and in Hilbert Spaces	214
9.4	Linear Varieties and Hyperplanes; Interpolation and Approxima-	
	tion in Hilbert Space	225
	CHAPTER X · ORTHOGONAL POLYNOMIALS	
10.1	General Properties of Real Orthogonal Polynomials	234
10.2	Complex Orthogonal Polynomials	239
10.3	The Special Function Theory of the Jacobi Polynomials	246
	CHAPTER XI · THE THEORY OF CLOSURE AND COMPLETENESS	
11.1	The Fundamental Theorem of Closure and Completeness	257
11.2	Completeness of the Powers and Trigonometric Systems for	
	$L^2[a,b]$	265
11.3	The Müntz Closure Theorem	267
11.4	Closure Theorems for Classes of Analytic Functions	273
11.5	Closure Theorems for Normed Linear Spaces	281
	CHAPTER XII · EXPANSION THEOREMS FOR ORTHOGONAL FUNCTIONS	
12.1	The Historical Fourier Series	290
12.2	Fejér's Theory of Fourier Series	299
12.3	Fourier Series of Periodic Analytic Functions	305
12.4	Convergence of the Legendre Series for Analytic Functions	308
12.5	Complex Orthogonal Expansions	314
12.6	Reproducing Kernel Functions	316
	CHAPTER XIII · DEGREE OF APPROXIMATION	
13.1	The Measure of Best Approximation	328
13.2	Degree of Approximation with Some Square Norms	333
13.3	Degree of Approximation with Uniform Norm	334
	CHAPTER XIV · APPROXIMATION OF LINEAR FUNCTIONALS	
14.1	Rules and Their Determination	341
14.2	The Gauss-Jacobi Theory of Approximate Integration	342

xiv	CONTENTS	
14.3	Norms of Functionals as Error Estimates	345
14.4	Weak* Convergence	346
	Appendix	363
	Short Guide to Orthogonal Polynomials	
	Table of the Tschebyscheff Polynomials	
	Table of the Legendre Polynomials	
	Bibliography	373