CONTENTS

Chapter I. The Space $L_{p(x)}^2$	
1. The Problem	7
2. The Weight Function. The Space $L_{p(x)}^2$	9
3. Convergence in Mean	11
4. Classes of Functions Dense in $L^2_{p(x)}$	15
Chapter II. ORTHOGONAL SYSTEMS	
1. Orthogonality. Examples	19
2. The Fourier Coefficients	23
3. Completeness and Closedness	29
Chapter III. LINEARLY INDEPENDENT SYSTEMS OF FUNCTIONS	
1. Linear Independence. The Gram Determinant. The SCHMIDT Theorem	32
2. Approximation by Linearly Independent Functions	36
3. The Müntz Theorems	40
Chapter IV. General Properties of Orthogonal Polynomials	
1. Foundations	45
2. Roots of Orthogonal Polynomials. A Recursion Formula	50
3. Relation to the Theory of Continued Fractions	58
4. The Christoffel-Darboux Formula. Convergence of	
Orthogonal Expansions.	66
5. Changing the Weight Function	74
Chapter V. THE LEGENDRE POLYNOMIALS	
1. The Rodrigues Formula	82
2. The Generating Function	88
3. The Laplace Integral	91
4. Expansions in Terms of Legendre Polynomials	94

CONTENTS

Chapter VI. The Jacobi Polynomials	
1. Generalization of the Rodrigues Formula	102
2. The Recursion Formula, Generating Function, and	
Differential Equation	107
3. Estimates of the Jacobi Polynomials. The Expansion	
Problem.	109
4. Tchebysheff Polynomials of the Second Kind	114
5. The Jacobi Polynomials for $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{2}$	121
Chapter VII. THE MOMENT PROBLEM FOR FINITE INTERVALS	
1. Formulation of the Problem	126
2. The Theorems of F. Hausdorff	130
3. Linear Functionals in C and L^2	136
4. Positive Definite Sequences	142
Chapter VIII. Infinite Intervals	
1. Introduction	147
2. The Laguerre Polynomials	151
3. The Generalized LAGUERRE Polynomials	153
4. The Hermite Polynomials	156
5. The Moment Problem for Infinite Intervals	159
6. The FAVARD Theorem	167
Bibliography	171
Index	175
Index of Symbols	176