CONTENTS

Chapter	, I	TRIGONOMETRIC SERIES	
AND F	OUR	ZIER SERIES	1
	1.1	The Genesis of Trigonometric Series and Fourier Series]
	1.2	Pointwise Representation of Functions by Trigonometric Series	3
	1.3	New Ideas about Representation	7
	Exe	ercises	10
Chapter	2	GROUP STRUCTURE	
AND F	OUR	ZIER SERIES	14
	2.1	Periodic Functions	14
	2.2	Translates of Functions. Characters and Exponentials. The Invariant Integral	16
	2.3	Fourier Coefficients and Their Elementary Properties	30
	2.4	The Uniqueness Theorem and the Density of Trigonometric Polynomials	40
	2.5	Remarks on the Dual Problems	43
	Exe	ercises	45
Chapter	3	CONVOLUTIONS OF FUNCTIONS	50
	3.1	Definition and First Properties of Convolution	50
	3.2	Approximate Identities for Convolution	59
	3.3	The Group Algebra Concept	62
	3.4	The Dual Concepts	64
	Exe	rcises	64

CONTENTS

Chapter 4	4]	HOMOMORPHISMS OF CONVOLUTION	
ALGEBI	RAS		69
	4.1	Complex Homomorphisms and Fourier Coefficients	69
	4.2	Homomorphisms of the Group Algebra	72
	Exe	rcises	76
Chapter	5 '	THE DIRICHLET AND FEJÉR KERNELS.	
CESÀRO	su	MMABILITY	78
	5.1	The Dirichlet and Fejér Kernels	78
	5.2	The Localization Principle	81
	5.3	Remarks concerning Summability	82
	Exe	rcises	85
Chapter	6	CESÀRO SUMMABILITY OF FOURIER SERIES	
_		ONSEQUENCES	87
	6.1	Uniform and Mean Summability	87
	6.2	Applications and Corollaries of 6.1.1	90
	6.3	More about Pointwise Summability	94
	6.4	Pointwise Summability Almost Everywhere	95
	6.5	Approximation by Trigonometric Polynomials	98
	6.6	General Comments on Summability of Fourier Series	102
	6.7	Remarks on the Dual Aspects	103
	Exe	rcises	104
Chapter	7	SOME SPECIAL SERIES AND THEIR	
APPLIC	ATI	ons	109
	7.1	Some Preliminaries	10
	7.2	Pointwise Convergence of the Series (C) and (S)	11-
	7.3	The Series (C) and (S) as Fourier Series	11'
	7.4	Application to $A(Z)$	124
	7.5	Application to Factorization Problems	12
	Eve	PARIT	12

CONTENTS	x i
CONTENTS	XI.

Chapter 8	FOURIER SERIES IN L ²	130
8.1	A Minimal Property	131
8.2	Mean Convergence of Fourier Series in L^2 . Parseval's Formula	131
8.3	The Riesz-Fischer Theorem	132
8.4	Factorization Problems Again	134
8.5	More about Mean Moduli of Continuity	135
8.6	Concerning Subsequences of $s_N f$	137
8.7	$\mathbf{A}(\mathbf{Z})$ Once Again	139
Ex	ercises	142
Chapter 9	POSITIVE DEFINITE FUNCTIONS	
AND BOCK	INER'S THEOREM	148
9.1	Mise-en-Scène	148
9.2	Toward the Bochner Theorem	149
9.3	An Alternative Proof of the Parseval Formula	152
9.4	Other Versions of the Bochner Theorem	152
Ex	ercises	153
Chapter 10	POINTWISE CONVERGENCE	
OF FOURI	ER SERIES	155
10.	1 Functions of Bounded Variation and Jordan's Test	156
10.	2 Remarks on Other Criteria for Convergence; Dini's Test	159
10.	3 The Divergence of Fourier Series	160
10.	4 The Order of Magnitude of $s_N f$. Pointwise Convergence Almost Everywhere	166
10.	5 More about the Parseval Formula	171
10.	6 Functions with Absolutely Convergent Fourier Series	173
Ex	ercises	180

xii CONTENTS

Appendix A	METRIC SPACES AND BAIRE'S THEOREM	187	
A.1	Some Definitions	187	
A.2	Baire's Category Theorem	187	
A.3	Corollary	188	
A.4	Lower Semicontinuous Functions	188	
A.5	A Lemma	189	
Appendix B	CONCERNING TOPOLOGICAL LINEAR SPACES	191	
B.1	Preliminary Definitions	191	
B.2	Uniform Boundedness Principles	194	
B.3	Open Mapping and Closed Graph Theorems	195	
B.4	The Weak Compacity Principle	197	
B.5	The Hahn-Banach Theorem	199	
Appendix C	THE DUAL OF L ^p $(1 \le p < \infty)$; WEAK		
SEQUENTI	AL COMPLETENESS OF L ¹	201	
C.1	The Dual of \mathbf{L}^p $(1 \leqslant p < \infty)$	201	
C.2	Weak Sequential Completeness of \mathbf{L}^1	202	
Appendix D	A WEAK FORM OF RUNGE'S THEOREM	205	
Bib	Bibliography		
	Research Publications		
•	Symbols Index		
Inde			