CONTENTS

	Pretace	ix
1	The approximation problem and existence of best	
	approximations	1
	1.1 Examples of approximation problems	1
	1.2 Approximation in a metric space	3
	1.3 Approximation in a normed linear space	5
	1.4 The L_p -norms	6
	1.5 A geometric view of best approximations	9
2	The uniqueness of best approximations	13
	2.1 Convexity conditions	13
	2.2 Conditions for the uniqueness of the best approximation	14
	2.3 The continuity of best approximation operators	16
	2.4 The 1-, 2- and ∞-norms	17
3	Approximation operators and some approximating functions	22
	3.1 Approximation operators	22
	3.2 Lebesgue constants	24
	3.3 Polynomial approximations to differentiable functions	25
	3.4 Piecewise polynomial approximations	28
4	Polynomial interpolation	33
	4.1 The Lagrange interpolation formula	33
	4.2 The error in polynomial interpolation	35
	4.3 The Chebyshev interpolation points	37
	4.4 The norm of the Lagrange interpolation operator	41
5	Divided differences	46
	5.1 Basic properties of divided differences	46
	5.2 Newton's interpolation method	48

	Contents	vi
	5.3 The recurrence relation for divided differences	49
	5.4 Discussion of formulae for polynomial interpolation	51
	5.5 Hermite interpolation	53
6	The uniform convergence of polynomial approximations	61
	6.1 The Weierstrass theorem	61
	6.2 Monotone operators	62
	6.3 The Bernstein operator	65
	6.4 The derivatives of the Bernstein approximations	67
7	The theory of minimax approximation	72
	7.1 Introduction to minimax approximation	72
	7.2 The reduction of the error of a trial approximation	74
	7.3 The characterization theorem and the Haar condition	76
	7.4 Uniqueness and bounds on the minimax error	79
8	The exchange algorithm	85
	8.1 Summary of the exchange algorithm	85
	8.2 Adjustment of the reference	87
	8.3 An example of the iterations of the exchange algorithm	88
	8.4 Applications of Chebyshev polynomials to minimax	•
	approximation	90
	8.5 Minimax approximation on a discrete point set	92
9	The convergence of the exchange algorithm	97
	9.1 The increase in the levelled reference error	97
	9.2 Proof of convergence	99
	9.3 Properties of the point that is brought into reference	102
	9.4 Second-order convergence	105
10	Rational approximation by the exchange algorithm	111
	10.1 Best minimax rational approximation	111
	10.2 The best approximation on a reference	113
	10.3 Some convergence properties of the exchange algorithm	116
	10.4 Methods based on linear programming	118
11	Least squares approximation	123
	11.1 The general form of a linear least squares calculation	123
	11.2 The least squares characterization theorem	125
	11.3 Methods of calculation	126
	11.4 The recurrence relation for orthogonal polynomials	131

Contents	vii

12	Properties of orthogonal polynomials	136
	12.1 Elementary properties	136
	12.2 Gaussian quadrature	138
	12.3 The characterization of orthogonal polynomials	141
	12.4 The operator R_n	143
13	Approximation to periodic functions	150
	13.1 Trigonometric polynomials	150
	13.2 The Fourier series operator S_n	152
	13.3 The discrete Fourier series operator	156
	13.4 Fast Fourier transforms	158
14	The theory of best L_1 approximation	164
	14.1 Introduction to best L_1 approximation	164
	14.2 The characterization theorem	165
	14.3 Consequences of the Haar condition	169
	14.4 The L_1 interpolation points for algebraic polynomials	172
15	An example of L_1 approximation and the discrete case	177
	15.1 A useful example of L_1 approximation	177
	15.2 Jackson's first theorem	179
	15.3 Discrete L_1 approximation	181
	15.4 Linear programming methods	183
16	The order of convergence of polynomial approximations	189
	16.1 Approximations to non-differentiable functions	189
	16.2 The Dini-Lipschitz theorem	192
	16.3 Some bounds that depend on higher derivatives	194
	16.4 Extensions to algebraic polynomials	195
17	The uniform boundedness theorem	200
	17.1 Preliminary results	200
	17.2 Tests for uniform convergence	202
	17.3 Application to trigonometric polynomials	204
	17.4 Application to algebraic polynomials	208
18	Interpolation by piecewise polynomials	212
	18.1 Local interpolation methods	212
	18.2 Cubic spline interpolation	215
	18.3 End conditions for cubic spline interpolation	219
	18.4 Interpolating splines of other degrees	221

	Contents	viii
19	B -splines	227
	19.1 The parameters of a spline function	227
	19.2 The form of B-splines	229
	19.3 B-splines as basis functions	231
	19.4 A recurrence relation for B-splines	234
	19.5 The Schoenberg-Whitney theorem	236
20	Convergence properties of spline approximations	241
	20.1 Uniform convergence	241
	20.2 The order of convergence when f is differentiable	243
	20.3 Local spline interpolation	246
	20.4 Cubic splines with constant knot spacing	248
21	Knot positions and the calculation of spline approximations	254
	21.1 The distribution of knots at a singularity	254
	21.2 Interpolation for general knots	257
	21.3 The approximation of functions to prescribed accuracy	261
22	The Peano kernel theorem	268
	22.1 The error of a formula for the solution of differential equations	268
	22.2 The Peano kernel theorem	270
	22.3 Application to divided differences and to polynomial	
	interpolation	274
	22.4 Application to cubic spline interpolation	277
23	Natural and perfect splines	283
	23.1 A variational problem	283
	23.2 Properties of natural splines	285
	23.3 Perfect splines	290
24	Optimal interpolation	298
	24.1 The optimal interpolation problem	298
	24.2 L_1 approximation by B -splines	301
	24.3 Properties of optimal interpolation	307
	Appendix A The Haar condition	313
	Appendix B Related work and references	317
	Index	333