CONTENTS

Preface	vii
List of Symbols	xiii
Chapter I. Probability Spaces	1
1. Introduction to R	1
2. What is a probability space? Motivation	5
3. Definition of a probability space	9
4. Construction of a probability from a distribution	
function	16
5. Additional exercises*	26
Chapter II. Integration	29
1. Integration on a probability space	29
2. Lebesgue measure on R and Lebesgue integration	44
3. The Riemann integral and the Lebesgue integral	49
4. Probability density functions	55
5. Infinite series again	58
6. Differentiation under the integral sign	59
7. Signed measures and the Radon–Nikodym theorem*	60
8. Signed measures on \mathbb{R} and functions of bounded	
variation*	71
9. Additional exercises*	78
Chapter III. Independence and Product	
Measures	86
1. Random vectors and Borel sets in \mathbb{R}^n	86
2. Independence	89
3. Product measures	95
4. Infinite products	110
5. Some remarks on Markov chains*	119
6. Additional exercises*	131
Chapter IV. Convergence of Random Variables	
and Measurable Functions	137
1. Norms for random variables and measurable functions	137
2. Continuous functions and L^{p*}	149
3. Pointwise convergence and convergence in measure or	
probability	167
4. Kolmogorov's inequality and the strong law of large	
numbers	176
5. Uniform integrability and truncation*	180

xii CONTENTS

6. Differentiation: the Hardy-Littlewood maximal	
function*	186
7. Additional exercises*	199
Chapter V. Conditional Expectation and	
an Introduction to Martingales	210
1. Conditional expectation and Hilbert space	210
2. Conditional expectation	217
3. Sufficient statistics*	226
4. Martingales	229
5. An introduction to martingale convergence	238
6. The three-series theorem and the Doob decomposition	241
7. The martingale convergence theorem	245
Chapter VI. An Introduction to	
Weak Convergence	250
1. Motivation: empirical distributions	250
2. Weak convergence of probabilities:	
equivalent formulations	251
3. Weak convergence of random variables	255
4. Empirical distributions again: the Glivenko-Cantelli	
theorem	260
5. The characteristic function	262
6. Uniqueness and inversion of the characteristic function	266
7. The central limit theorem	273
8. Additional exercises*	281
9. Appendix*	284
Bibliography	291
Index	293