Contents

Preface

Notation

Acknowledgments

Cha	apter 1 Sequences and Series			
1.1	Order Symbols and Asymptotic Scales, Continuous Variables	1		
1.2	Integer Variables	2 3		
1.3				
1.4				
1.5	Further Properties of Complex Sequences	8		
1.6	Totally Monotone and Totally Oscillatory Sequences	12		
1.7	Birkhoff-Poincaré Logarithmic Scales	15		
Cha	apter 2 Linear Transformations			
2.1	Toeplitz's Theorem in a Banach Space	24		
2.2	Complex Toeplitz Methods	27		
2.3	Important Triangles	33		
2.4	Toeplitz Methods Applied to Series of Variable Terms; Fourier Series and			
	Lebesgue Constants	48		
2.5	Toeplitz Methods and Rational Approximations; The Padé Table	53		
2.6	Other Orthogonal Methods; Pollaczek Polynomials and Padé			
	Approximants	59		
2.7				
2.7	Other Methods for Generating Toeplitz Transformations	63		

iх

xiii xv

Cha	pter 3	Linear Lozenge Methods	
3.1	Backgro	und: Richardson Extrapolation and Romberg Integration	67
3.2	General	Deltoids	71
3.3		Obtained by Extrapolation	73
3.4		: Quadrature Based on Cardinal Interpolation	77
3.5	General	Rhombus Lozenges	80
Cha	pter 4	Optimal Methods and Methods Based on Power Series	
4.1	Best Me	thods for Laplace Moment Sequences	84
4.2		Approximations in ℓ^1 and $\mathcal{R}_{\mathcal{C}}$	90
4.3	Methods	s Based on Power Series	94
Cha	pter 5	Nonlinear Lozenges; Iteration Sequences	
5.1		Theory of Nonlinear Lozenge Algorithms	101
5.2		gularity for Certain Lozenges	105
5.3	Iteration	Sequences	106
Cha	pter 6	The Schmidt Transformation; The ε -Algorithm	
6.1	Backgro		120
6.2	Derivati		121
		ss Results	123
6.4 6.5		ct of e_k on Certain Series eries and e_k ; The Padé Table	126 128
6.6		rical Significance of the Schmidt Transformation	136
6.7	The ε-Al		138
6.8		pility of the ε-Algorithm	141
		Analogs of the Formulas of Numerical Analysis	142
		zations of the \varepsilon-Algorithm	144
6.11	Fixed Po	pints of Differentiable Functions	146
Cha	pter 7	Aitken's δ^2 -Process and Related Methods	
7.1	Aitken's	δ^2 -Process	149
7.2	The Lub	kin W-Transform	152
7.3	Related	Algorithms	154
Cha	ipter 8	Lozenge Algorithms and the Theory of Continued Fractions	
8.1	Backgro	und	156
8.2		tient Difference Algorithm; The η-Algorithm	156

	Contents V	ii
Chapter 9 Other Lozenge Algoria	thms and Nonlinear Methods	
9.1 A Multiparameter ε-Algorithm	10	66
9.2 The ρ -Algorithm	16	68
9.3 The θ -Algorithm	10	69
9.4 Implicit Summation: Logarithmically	Convergent Sequences	71
Chapter 10 The Brezinski-Håvie	Protocol	
10.1 Introduction and Derivation; Seque	nces in a Banach Space	75
10.2 The Case φ Constant	18	80
10.3 The Topological Schmidt Transform	nation 18	82
10.4 The Scalar Case		85
10.5 The Levin Transformations	18	89
10.6 Special Computational Procedures:	The Trench Algorithm 19	98
Chapter 11 The Brezinski-Håvie Quadrature	Protocol and Numerical	
11.1 Introduction; The G-Transform	2	00
11.2 The Computation of Fourier Coeffic		05
11.3 The computation of Fourier Coeffic		07
Chapter 12 Probabilistic Method	ls	
12.1 Introduction	2	10
12.2 Derivation of the Methods	2	11
12.3 Properties of the Methods	2	16
12.4 Numerics	2	23
Chapter 13 Multiple Sequences		
13.1 Rectangular Transformations	2	27
13.2 Crystal Lattice Sums	2	32
Appendix		
A.1 Lagrangian Interpolation	2	243
A.2 The Formula for the ε-Algorithm	2	244
A.3 Sylvester's Expansion Theorem	2	247
Bibliography	2	249
Index	,	254