Contents

U	Introdi	iction	1
1	Histori	cal overview	3
2	Summability methods in general		9
	2.1 Reg	gularity	9
		neralized Cesàro summability	16
	•	uence-to-function methods based on power series	23
	2.4 Eul	er summability	25
3	Borel's methods of summability		27
		ic definitions	27
		ic properties of Borel's methods	28
		1 Common properties	28
	3.2.	2 Interrelationships	29
	3.3 Ext	ensions	30
		1 Absolute summability	30
		2 Strong summability	31
		3 Normal and regular summability	31
		ationships with other methods	32
	0.1.	1 Euler methods	32
	J. 1.	2 Cesàro and Abel methods	32
		3 Other methods	34
		elian theorems	34
	3.6 Tau	berian theorems	35
4	Relations with the family of circle methods		37
		er-Knopp summability methods	37
	$4.2 T_{\alpha}$		39

x Contents

	4.2.1 Definitions	39
	$4.2.2 T_{\alpha}$ on series	40
	$4.2.3 T_{\alpha} \text{ and } T_{\beta}$	41
	$4.2.4 T_{\alpha} \text{ and } B$	42
	4.2.5 Translativity	43
4.3	Meyer–König's S_{lpha} methods	43
	4.3.1 Definition	43
	4.3.2 Translativity	44
	4.3.3 S_{α} on series	45
	4.3.4 S_{α} and S_{β}	45
	$4.3.5 S_{\alpha} \text{ and } E_{p}$	46
	4.3.6 Function theoretic considerations	46
	Relations of T_{α} and S_{α} with E_p and B	48
	Relations of E_p , B , and S_{α} with T_{α}	49
4.6	Equivalence of $E_p, B, S_\alpha, T_\alpha$ for bounded sequences	54
4.7	Tauberian theorems	54
Ger	neralizations of Borel's methods	57
	First attempts	57
	Mittag-Leffler's functions	58
	Borel-type methods	59
0.0	5.3.1 Definitions	59
	5.3.2 Preliminaries	62
	5.3.3 Lemmas	64
5.4	Relationships with respect to the parameter α	66
	Abelian relationships with respect to the parameter β	67
	5.5.1 Interrelationships with same type	67
	5.5.2 Interrelationships between types	69
5.6	Tauberian relationships with respect to the parameter β	79
	5.6.1 Preliminary results	80
	5.6.2 Proofs of the theorems	84
5.7	Extended definitions	85
	5.7.1 Results involving strong summability	86
	5.7.2 Results involving absolute summability	87
Ab	elian theorems	89
6.1	Introduction	89
6.2	Abelian theorems for ordinary Borel-type methods	89
	Abelian theorems for strong Borel-type methods	93
	Abelian theorems for absolute Borel-type methods	94

		Contents	xi
7	Tauberian theorems – I		97
	7.1	The 'o' theorem	98
		7.1.1 Preliminary results	98
		7.1.2 Results on Cesàro sums	102
		7.1.3 Proof of the 'o' theorem	107
	7.2	The 'O' theorem	108
		7.2.1 Preliminary results	108
		7.2.2 Estimates of some sums as integrals	110
		7.2.3 Results on summability (e, c)	112
		7.2.4 Two preliminary theorems	118
		7.2.5 Proof of the 'O' theorem	121
	7.3	Kwee's 'O' theorem	122
		7.3.1 Preliminary results	123
		7.3.2 Proof of Kwee's 'O' theorem	127
		7.3.3 Kwee's 'O' theorem is best possible	129
8	Taı	ıberian theorems – II	133
-		The slowly decreasing theorem	133
		8.1.1 Preliminary results	135
	8.2	An equivalence theorem	149
		Proof of the slowly decreasing theorem	157
		Gap theorems	157
9	Rei	lationships with other methods	159
J		Product methods with the Cesàro method	159
	J.1	9.1.1 Product methods	159
		9.1.2 Preliminary results	160
		9.1.3 Proof of the Cesàro product theorem	162
	9.2	Abelian relations with the Abel-type methods	164
	- · · <u>-</u>	9.2.1 Review of the definitions	164
		9.2.2 Preliminary results	165
		9.2.3 Theorems from Borel to Abel	167
	9.3	Tauberian relations with the Abel-type methods	168
	2.0	9.3.1 Preliminary results	169
		9.3.2 Theorems from Abel to Borel	169
	9.4	Tauberian relations with the logarithmic method	175
		9.4.1 Preliminary results	175
		9.4.2 The logarithmic theorem	177
	9.5	Relations with the Lambert method	180

Transformation formulae

Essential lemmas

9.5.1

9.5.2

183

186

xii Contents

	9.5.3 Proof of the Lambert theorem	188	
10	Applications of Borel's methods	191	
	10.1 An early application	191	
	10.2 Laplace transforms		
	10.3 Entire functions and the Borel transform	195	
	10.3.1 The Phragmén-Lindelöf indicator function	195	
	10.3.2 The conjugate indicator diagram	196	
	10.4 Arithmetical functions	198	
	10.5 Basic theory	204	
\mathbf{Re}	References		
Inc	lex	239	