CONTENTS

Page

PREFACE

T	INTRODUCTION	
	What is a Fourier Transform?	2
	Typical Applications of the Transform	3
	Formal Statement of the Fourier Transform	5
	Convolutions	6 6
	Notations The Manning of Narative Programming	7
	The Meaning of Negative Frequencies Basic Formulae	8
11	THE ELEMENTARY TRANSFORM	10
	The Spatial Relationships	10
	Reciprocity	12
	Time and Frequency	13
	The Delta Function	15
III	EXTENDED FUNCTIONS: THE SUPERPOSITION	
	OR SUMMATION PROPERTY	19
	The Superposition of Elementary Functions	19
	The Rectangular Function	21
	Complex Distributions	24
	A List of Common Fourier Pairs	26
IV	THE DIRECT APPLICATION OF FOURIER TRANSFORMS	31
	Frequency and Time Relationships in Simple Circuits	31
	One Dimensional Aerial Systems	32
	Optical Slits and Gratings	34
	An Optical Example - The Rayleigh Refractometer	3 5
	Examples in Acoustics	37
	Two Dimensional Fourier Transforms	37
	The Numerical Evaluation of Fourier Transforms	41

VI CONTENTS	
VI CONTENTS	Page
V LIMITATIONS, PRODUCTS AND CONVOLUTIONS	4 5
The Effect of Interposing Limits	45
Convolutions	47
Physical Interpretation of Convolutions	49
Some Examples of Convolutions	54
The Solution of Fourier Transforms by the Application of the Convolution Theorem	E 0
The Isosceles Triangle	56 56
The Doublet Pulse	57
Convolutions involving the Sine Integral $Si(x)$	60
Two Dimensional Convolutions	65
VI THE DIFFERENTIATION OF FOURIER TRANSFORMS	68
Differentiation and Repeated Differentiation	69
The Fourier Transform of a Step Function or Straight Edge	70
The Convolution - Differentiation Relationship	74
The Differential Operator $h(x)$	7 5
The Integral Operator	79
VII THE AUTO-CORRELATION FUNCTION	
AND THE TRANSFER FUNCTION OF A SYSTEM LINEAR	
ININTENSITY	82
The Auto-correlation Function	82
The Transfer Function of a System Linear in Intensity	86
Examples on Chapter VII:	90
1. The Telescope	90
2. Stellar Interferometers	95
(i) The Michelson Stellar Interferometer	95
(ii) The Switched Interferometer	99
(iii) The Post-Detector Intensity Interferometer Note on Fourier Synthesis of Apertures	102 105
Note on Fourier synthesis of Apertures	103
APPENDIX I ANALOGUE COMPUTERS OF FOURIER	
TRANSFORMS	106
(i) The Diffraction Computer	106
(ii) A Mechanical Computer	107
(iii) A Coherent Electronic Computer	108
(iv) A Coherent Electronic Computer with an Incoherent Source	109
Appendix II	111
Tables of $\frac{J_1 \chi}{\gamma}$, Si(x), $\frac{\sin \chi}{\gamma}$.	
INDEX	116