Contents

Preface	ix
Summary of Notation	xi
CHAPTER I. Introductory Concepts and Some General Results	1
§1. Types of convergence	1
§2. Completeness, totality, biorthogonality	5
§3. Fourier coefficients and partial sums of an orthogonal series	
§4. The basis property	9
CHAPTER II. Independent Functions and Their First Applications §1. Definition and construction of sequences of independent	17
functions	17
§2. Properties of systems of independent functions	24
§3. Convergence for almost all choices of signs, and	
unconditional convergence	38
§4. Random permutations	51
CHAPTER III. The Haar System	61
§1. Definition; form of the partial sums	61
§2. Inequalities for coefficients and theorems on the convergence	.
of Fourier-Haar series	64
§3. Unconditional convergence of Fourier-Haar series	
in $L^p(0,1)$	71
§4. Convergence almost everywhere and in measure of Fourier	
series in the Haar system	87
§5. Absolute convergence almost everywhere and unconditional	
convergence almost everywhere for Haar series	93
§6. Transformations of the Haar system	100

v

vi CONTENTS

CHAPTER IV. Some Results on the Trigonometric and Walsh	
Systems	105
§1. Properties of the partial sums of Fourier series, Fourier	
coefficients, and Fejér means	105
§2. Best approximation. Vallée-Poussin means	110
§3. Convergence of trigonometric series in L^p and almost	
everywhere	114
§4. Uniform and absolute convergence of Fourier series	122
§5. The Walsh system. Definition and some properties	134
CHAPTER V. The Hilbert Transform and some Function Spaces	145
§1. The Hilbert transform	145
§2. The spaces $Re \mathcal{H}^1$ and BMO	160
§3. The spaces $\mathcal{H}(\Delta)$ and BMO(Δ) (nonperiodic case)	172
CHAPTER VI. The Faber-Schauder and Franklin Systems	185
§1. The Faber-Schauder system	185
§2. Systems of Faber-Schauder type	195
§3. The Franklin system. Definition, elementary properties	197
§4. The exponential inequality for the Franklin functions	201
§5. Unconditional convergence of Fourier-Franklin series in the	
spaces $\mathscr{H}(\Delta)$ and $L^p(0,1)$	206
CHAPTER VII. Orthogonalization and Factorization Theorems	221
§1. Orthogonalization of a system of functions by means of	
extension to a larger set	222
§2. Two theorems on sequences of functions	232
§3. Structure of systems with convergence in measure for l^2	241
§4. Properties of the majorant operator for the partial sums	244
CHAPTER VIII. Theorems on the Convergence of General	
Orthogonal Series	251
§1. Convergence of orthogonal series almost everywhere	251
§2. Unconditional convergence almost everywhere	265
§3. Subsequences with convergence almost everywhere	272
§4. Lacunary systems	277
§5. Properties of integrated orthonormal systems	288

CONTENTS vii

CHAPTER IX. General Theorems on the Divergence of Orthogonal Series	202
	293
§1. Divergence almost everywhere of rearrangements of L^2	• • •
Fourier series	293
§2. Fourier coefficients of continuous functions	301
§3. Some properties of uniformly bounded orthonormal systems	311
CHAPTER X. Some Theorems on the Representation of Functions	
by Orthogonal Series	341
§1. Representation of functions by series that converge in	
measure	342
§2. Representation of functions by series that converge almost	
everywhere	350
§3. Two theorems on universal series	373
Appendix 1	385
Appendix 2	401
Notes	421
Bibliography	435
Index	449