Contents

0. 1	ntroduction, Auxiliary Propositions and Notations	VII
§	1. Introduction	VII
§	2. Auxiliary Propositions and Notations	XII
I.	Linear Equations of Parabolic Type	1
	§ 1. Analytic Semigroups	1
	§ 2. The Evolution Operator U(t,s)	4
	§ 3. Fractional Powers	9
	9 4. Comments to Chapter I	12
II.	Local Solutions of First Order Semilinear	
	Evolution Equations	18
	§ 1. Solutions of Equations with Nonlinearities	
	Relatively Bounded to A	18
	§ 2. A Nonlinear Interpolation Theorem	29
	§ 3. Solutions of Equations with Nonlinearities	
	Relatively Bounded to $A^{1-\rho}$, their Higher	
	Regularity and the Question of Admissible	
	Initial Data	37
	§ 4. Comments to Chapter II	64
		6.0
III.	Local Solvability of the Equations of Navier-Stokes	67
	§ 1. Solonnikov's Results for the Instationary	
	Stokes Equation	67
	§ 2. Fractional Powers of the Stokes-Operator	80
	§ 3. Local Strong Solvability of the Navier-Stokes	
	Equations	99

	§ 4. Global Existence for Small Data. Extension	
	of the Previous Results to Arbitrary Dimensions	131
	§ 5. Comments to Chapter III	136
IV.	Global Existence and Global Regularity for the	
	Navier-Stokes Equations	139
	§ 1. Weak Solutions	139
	§ 2. Some Additional Regularity Properties for	
	Weak Solutions in General	149
	§ 3. On the Validity of the Energy Inequality and	
	on the Regularity of the Expression $\textbf{u'}+ \! \forall \pi$	154
	§ 4. On the Uniqueness of Weak Solutions. The	
	Connection between Weak Solutions and Local	
	Strong Solutions	166
	§ 5. Regularity of Weak Solutions. Leray's	
	Structure Theorem	190
	§ 6. Comments to Chapter IV	224
٧.	Global Solutions of Abstract Nonlinear Parabolic	
••	Equations and Applications	226
	•	226
	§ 1. Abstract Nonlinear Parabolic Equations	220
	§ 2. Applications to Parabolic Systems and to the	235
	Equations of Navier-Stokes	253
	§ 3. Comments to Chapter V	2.7
17 T	Pafarances	255

VI. References