Contents

Preface	vii

List of symbols xi

1 Maximum principles 1

- 1.1 Elliptic equations 2
- 1.2 Parabolic equations 5
- 1.3 Phragmén-Lindelof principles 13
- 1.4 Applications to nuclear reactor theory 19 Exercises 27

2 Entire solutions of elliptic equations 29

- 2.1 Harnack inequalities 29
- 2.2 Liouville's theorem 36
- 2.3 Wave propagation in a nonhomogeneous medium 37 Exercises 56

3 Analytic solutions of partial differential equations 58

- 3.1 The Cauchy-Kowalewski theorem 59
- 3.2 Unique continuation 63
- 3.3 Analyticity of solutions to partial differential equations 70
- 3.4 Equations with no solution 78 Exercises 80

4 Analytic continuation 82

- 4.1 Reflection principles for elliptic equations 83
- 4.2 Reflection principles for parabolic equations 95
- 4.3 The envelope method 106
- 4.4 Analytic continuation of analytic solutions to the heat equation 108

 Exercises 112

5 Runge's theorem 11

- 5.1 Elliptic equations and the kernel function 114
- 5.2 Parabolic equations 120
- 5.3 The Helmholtz equation in an exterior domain 130 Exercises 133

6 Pseudoanalytic functions 135

- 6.1 Singular integrals 136
- 6.2 The similarity principle and its applications 141
- 6.3 Reflection principles 145 Exercises 153

7 The backwards heat equation 155

- 7.1 The method of logarithmic convexity 158
- 7.2 Quasireversibility and pseudoparabolic equations 160 Exercises 179

8 The inverse scattering problem 180

- 8.1 Equivalent sources and their location 181
- 8.2 The Born approximation 186
- 8.3 Potential theory 189
- 8.4 The inverse scattering problem for a cylinder 206 Exercises 223

Bibliography 225

Index 237