Contents

Preface			ix
Chapter 1.	BASIC CONCEPTS		
	1.1.	Necessary background from the theory of	
		ordinary differential equations	1
	1.2.	Dynamical systems. Basic notions	6
	1.3.	Qualitative integration of dynamical systems	12
Chapter 2.	STR	UCTURALLY STABLE EQUILIBRIUM	
	STA	TES OF DYNAMICAL SYSTEMS	21
	2.1.	Notion of an equilibrium state. A linearized	
		system	21
	2.2.	Qualitative investigation of 2- and 3-dimensional	
		linear systems	24
	2.3.	High-dimensional linear systems. Invariant	
		subspaces	37
	2.4.	Behavior of trajectories of a linear system near	
		saddle equilibrium states	47
	2.5.	Topological classification of structurally stable	
		equilibrium states	56
	2.6.	Stable equilibrium states. Leading and non-leading	
		manifolds	65
	2.7.	Saddle equilibrium states. Invariant manifolds	78
	2.8.	Solution near a saddle. The boundary-value	
		problem	85
	2.9.	Problem of smooth linearization. Resonances	95

Chapter 3.		STRUCTURALLY STABLE PERIODIC		
	TRAJECTORIES OF DYNAMICAL SYSTEMS			
	3.1.	A Poincaré map. A fixed point. Multipliers	112	
	3.2.	Non-degenerate linear one- and two-dimensional		
		maps	115	
	3.3.	Fixed points of high-dimensional linear maps	125	
	3.4.		128	
	3.5.	Properties of nonlinear maps near a stable fixed		
		point	135	
	3.6.	Saddle fixed points. Invariant manifolds	141	
	3.7.	The boundary-value problem near a saddle fixed		
		point	154	
	3.8.	Behavior of linear maps near saddle fixed points.		
		Examples	168	
	3.9.	Geometrical properties of nonlinear saddle maps	181	
	3.10.	Normal coordinates in a neighborhood of a		
		periodic trajectory	186	
	3.11.	The variational equations	194	
	3.12.	Stability of periodic trajectories. Saddle periodic		
		trajectories	201	
		Smooth equivalence and resonances	209	
	3.14.	Autonomous normal forms	218	
	3.15.	The principle of contraction mappings. Saddle		
		maps	223	
Chapter 4.	INVARIANT TORI		235	
-	4.1.	Non-autonomous systems	236	
	4.2.	Theorem on the existence of an invariant torus.	230	
		The annulus principle	242	
	4.3.	Theorem on persistence of an invariant torus	258	
	4.4.	Basics of the theory of circle diffeomorphisms.	200	
		Synchronization problems	264	
Chapter 5.				
<u>F</u>	5.1.	Reduction to the center manifold	269	
	5.2.	A boundary-value problem	273	
	5.3.	Theorem on invariant foliation	286	
	5.4.	Proof of theorems on center manifolds	302	
	J.4.	real of theorems on center manifolds	314	

Contents			xxiii
Chapter 6.	CENTER MANIFOLD. NON-LOCAL CASE		
	6.1.	Center manifold theorem for a homoclinic loop	326
	6.2.	The Poincaré map near a homoclinic loop	334
	6.3.	Proof of the center manifold theorem near a	
		homoclinic loop	345
	6.4.	Center manifold theorem for heteroclinic cycles	348
Appendix A		ECIAL FORM OF SYSTEMS NEAR SADDLE EQUILIBRIUM STATE	357
Appendix B	TR	RST ORDER ASYMPTOTIC FOR THE AJECTORIES NEAR A SADDLE	
	F12	KED POINT	371
Bibliograph	y		381
Index			389