THE DYNAMICAL SYSTEM ON THE NATURAL NUMBERS GENERATED BY THE 3n+1 FUNCTION

Table of Contents

int	roduction	1
Ch	apter I. Some ideas around $3n+1$ iterations	10
1.	The problem	10
2.	About the origin of the problem	11
3.	Empirical investigations and stochastic models	12
4.	Related functions and generalizations	1:
5.	Some formulae describing the iteration	17
6.	Numbers with finite stopping time	19
7.	Asymptotics of predecessor sets	21
8.	Consecutive numbers with the same height	21
9.	Cycles	22
10.	Binary sequences and 2-adic analysis	2^{2}
11.	Reduction to residue classes and other sets	27
12.	Formal languages	27
13.	Functional equations	28
14.	A continuous extension to the real line	29
Ch	apter II. Analysis of the Collatz graph	3
1.	Directed graphs and dynamical systems on N	33
	Directed graphs	33
	The Collatz graph	36
	The size of a subset of \mathbb{N}	37
2.	Encoding of predecessors by admissible vectors	38
	Encoding a path in the Collatz graph	38
	Concatenation of integer vectors	39
	Tracing back integer vectors in the rationals	40
	Admissible integer vectors	4:
3.	Some properties of admissible vectors	48
	Recognizing admissible vectors	4
	Extending admissible vectors	4
	Similar integer vectors	4

Recurrent patterns in the Collatz graph	48
4. Counting functions and an estimate	51
Counting functions for admissible vectors	51
Counting predecessors of given size	53
The error of the estimate	55
5. Some restricted predecessor sets	56
The odd predecessors	56
The pruned Collatz graph	58
Pruned counting functions	59
Inductive construction of the pruned counting func-	
tions	60
Odd predecessors in the pruned Collatz graph	61
6. Comparison with other approaches	63
Uniform bounds	63
Crandall's approach	65
Crandall's estimate	67
Sander's estimate	71
Minorant vectors of Applegate and Lagarias	73
Chapter III. 3-adic averages of counting functions	76
1. Basics of 3-adic numbers	77
2. The estimating series	79
Counting functions on 3-adic numbers	79
The sequence of estimating series	80
Ill-behaviour of the estimating series	81
3. The averaged estimating series	83
A formula for 3-adic averages	83
The averaged estimating series	84
4. Maximal terms	85
The candidate for the maximal term	86
An estimate for the remaining terms	88
First order asymptotics of maximal terms	90
5. Asymptotic behaviour of the averaged sums	91
A naive approach	92
The theorem	92
Why $3n + 1$ and not $pn + 1$?	95
Chapter IV. An asymptotically homogeneous Markov	
chain	96
1. Small vectors and a Cauchy product	97
The structure of similarity classes	98
Partitions	98
Counting functions for small admissible vectors	100
A Cauchy product	102
2. Renormalization	103
Construction of the second factor of the state space	103
Construction of the first factor	104

The state space and the pull-backs	106
The normalization factor	107
3. Transition probabilities	107
Basic notions for Markov chains	108
Domains of dependence and domains of transition	109
The integral kernels	111
4. Vague convergence of the transition measures	112
5. The limiting transition probability	117
The invariant density	117
A relation to Cantor's set	119
6. Some further remarks	120
Chapter V. Mixing and predecessor density	
1. Locally covering triples	124
The basic estimate for locally covering triples	124
The normalized remainder map	125
3-adic balls and spheres	127
Globally covering triple	129
2. A predecessor density criterion	130
3. Consequences	134
A sufficient condition for positive density	134
Uniform positive density	135
Non-existence of globally optimal sequences	136
The reduction theorem	137
Bibliography	141
Index of authors	
List of symbols	
Index	155