Contents

Preface	XIII
Introduction 1 The purpose and subject matter of the book	1 1
Part I BASIC NOTIONS AND DEFINITIONS	7
Chapter 1 Dynamical systems. Phase space. Stochastic and chaotic	
systems. The number of degrees of freedom	9 9
1.1 Definition of a dynamical system and its phase space1.2 Classification of dynamical systems. The concept of energy	10
	13
1.3 Integrable and non-integrable systems. Action—angle variables 1.4 Systems with slowly time varying parameters. Adiabatic invariants	16
1.5 Dissipative systems. Amplifiers and generators	17
Chapter 2 Hamiltonian systems close to integrable. Appearance of stochastic motions in Hamiltonian systems 2.1 The content of the Kolmogorov-Arnold-Moser theory	19 19
Chapter 3 Attractors and repellers. Reconstruction of attractors from an experimental time series. Quantitative characteristics of	f
attractors	22
 3.1 Simple and complex attractors and repellers. Stochastic and chaotic attractors	22 24 25
Chapter 4 Natural and forced oscillations and waves. Self-oscillations and auto-waves	28
4.1 Natural and forced oscillations and waves	

4.2	Self-oscillations and auto-waves	30
Part THE	II BASIC DYNAMICAL MODELS OF THE DRY OF OSCILLATIONS AND WAVES	3
Chapte	er 5 Conservative systems	35
5.1		35
5.2	Time mone occurator	36
5.3	The Botha , offering system (proj. pro-	36
5.4	Chains of nonlinear oscillators. The Toda and Fermi-Pasta-Ulam chains	37
5.5	The wave equation. The Klein-Gordon and sine-Gordon equations.	
	The Born-Infeld equation	39
5.6		41
5.7	The Boussinesq and Korteweg-de Vries equations	43
5.8	The Whitehall that remaind a quantity	50
5.9	The Khokhlov-Zabolotskaya, cubic Schrödinger, Ginsburg-Landau,	
	and infour equations	51
5.10	Some discrete models of conservative systems	56
Chapte	er 6 Non-conservative Hamiltonian systems and dissipative	
syst	Genns	58
6.1	Non-linear damped oscillator with an external force	58
6.2	The Burgers and Burgers-Korteweg-de Vries equations	59
6.3	The van der Pol, Rayleigh, and Bautin equations	62
6.4	The equations of systems with inertial excitation and inertial	
	non-linearity	62
6.5	The Lorenz, Rössler, and Chua equations	63
6.6	A model of an active string	65
6.7	Models for locally excited media(the equation for a kink wave, the	
	Fitz Hugh-Nagumo and Turing equations)	65
6.8	The Kuramoto-Sivashinsky equation	66
6.9	The Feigenbaum and Zisook maps	67
Part WAV	III NATURAL (FREE) OSCILLATIONS AND ES IN LINEAR AND NON-LINEAR SYSTEMS	69
Chapt	er 7 Natural oscillations of non-linear oscillators	71
7.1	Pendulum oscillations	71
7.2	Oscillations described by the Duffing equation	72
7.3	Oscillations of a material point in a force field with the Toda potential	75
7.4	Oscillations of a bubble in fluid	77
7.5	Oscillations of species strength described by the Lotka-Volterra equations	81

7.6	Oscillations in a system with slowly time varying natural frequency $$. $$ 81
Chapte	er 8 Natural oscillations in systems of coupled oscillators 85
8.1	Linear conservative systems. Normal oscillations
8.2	Oscillations in linear homogeneous and periodically inhomogeneous
	chains
8.3	Normal oscillations in non-linear conservative systems
8.4	Oscillations in non-linear homogeneous chains
8.5	Oscillations of coupled non-linear damped oscillators. Homoclinic structures. A model of acoustic emission
CI (
_	er 9 Natural waves in bounded and unbounded continuous
	lia. Solitons 106
9.1	Normally and anomalously dispersive linear waves. Ionization waves
	in plasmas. Planetary waves in ocean (Rossby waves and solitons) 106
9.2	Non-linear waves described by the Born-Infeld equation. Solitons of
	the Klein-Gordon and sine-Gordon equations. Interaction between
	solitons
9.3	Simple, saw-tooth and shock waves
9.4	Solitons of the Korteweg-de Vries equation
9.5	Stationary waves described by the Burgers-Korteweg-de Vries equation 126
9.6	Solitons of the Boussinesq equation
9.7	Solitons of the cubic Schrödinger and Ginsburg-Landau equations 127
9.8	Natural waves in slightly inhomogeneous and slightly non-stationary
	media. The wave action as an adiabatic invariant
9.9	Natural waves in periodically stratified media
Part	
PASS	SIVE SYSTEMS 137
Chapt	er 10 Oscillations of a non-linear oscillator excited by an
	ernal force
10.1	Periodically driven non-linear oscillators. The main, subharmonic
10.1	and superharmonic resonances
	10.1.1 The main resonance
	10.1.2 Subharmonic resonances
	10.1.3 Superharmonic resonances
10.9	Chaotic oscillations of non-linear systems under periodic external
10.2	actions
	10.2.1 Chaotic oscillations described by the Duffing equation 148
	10.2.2 Chaotic oscillations of a gas bubble in liquid under the action
	of a sound field
	10.2.3 Chaotic oscillations in the Vallis model for non-linear
	interaction between ocean and atmosphere
	interaction between ocean and admosphere

10.3	Oscillations excited by external force with a slowly time varying frequency
Chapte	r 11 Oscillations of coupled non-linear oscillators excited by an
	rnal periodic force 156
11.1	The main resonance in a system of two coupled harmonically excited
	non-linear oscillators
11.2	Combination resonances in two coupled harmonically driven
	non-linear oscillators
11.3	Driven oscillations in linear homogeneous and periodically
	inhomogeneous chains caused by a harmonic force applied to the input
	of the chain
11.4	Forced oscillations in non-linear homogeneous and periodically
	inhomogeneous chains caused by a harmonic force applied to the input
	of the chain. Excitation of the second harmonic and decay instability 173
11.5	Driven vibration of a string excited by a distributed external harmonic
	force
Chante	er 12 Parametric oscillations
12.1	Parametrically excited non-linear oscillator
	12.1.1 Slightly non-linear oscillator with small damping and small
	harmonic action
	12.1.2 High frequency parametric action upon a pendulum.
	Stabilization of the upper equilibrium position as an induced
	phase transition
12.2	Chaotization of a parametrically excited non-linear oscillator.
	Regular and chaotic oscillations in a model of childhood infections
	accounting for periodic seasonal change of the contact rate 191
12.3	Parametric resonances in a system of two coupled oscillators 192
12.4	Simultaneous forced and parametric excitation of a linear oscillator.
	Parametric amplifier
Chant	er 13 Waves in semibounded media excited by perturbations
Chapt	lied to their boundaries 202
13 1	One-dimensional waves in non-linear homogeneous non-dispersive
10.1	media. Shock and saw-tooth waves
13.2	One-dimensional waves in non-linear homogeneous slightly dispersive
10.2	media described by the Korteweg-de Vries equation 206
13.3	One-dimensional waves in non-linear highly dispersive media 206
13.4	Non-linear wave bundles in dispersive media
10.,	13.4.1 Self-focusing and self-defocusing of wave bundles 211
	13.4.2 Compression and expantion of pulses in non-linear dispersive
	media
13.5	Non-linear wave bundles in non-dispersive media. Approximate
	solutions of the Khokhlov-Zabolotskaya equation
13.6	Waves in slightly inhomogeneous media

13.7 Waves in periodically inhomogeneous media
Part V OSCILLATIONS AND WAVES IN ACTIVE SYSTEMS. SELF-OSCILLATIONS AND AUTO-WAVES 225
Chapter 14 Forced oscillations and waves in active non-self-oscillatory
systems. Turbulence. Burst instability. Excitation of waves with
negative energy 227
14.1 Amplifiers with lumped parameters
14.2 Continuous semibounded media with convective instability 228
14.3 Excitation of turbulence in non-closed fluid flows. The Klimontovich
criterion of motion ordering
14.4 One-dimensional waves in active non-linear media. Burst instability . 232
14.5 Waves with negative energy and instability caused by them 235
Chapter 15 Mechanisms of excitation and amplitude limitation of
self-oscillations and auto-waves. Classification of self-oscillatory
000
systems 15.1 Mechanisms of excitation and amplitude limitation of self-oscillations
in the simplest systems. Soft and hard excitation of self-oscillations . 239
15.2 Mechanisms of the excitation of self-oscillations in systems with high
frequency power sources
15.3 Mechanisms of excitation of self-oscillations in continuous systems.
Absolute instability as a mechanism of excitation of auto-waves 242
15.4 Quasi-harmonic and relaxation self-oscillatory systems. Stochastic
and chaotic systems
15.5 Possible routes for loss of stability of regular motions and the
appearance of chaos and stochasticity
15.5.1 The Feigenbaum scenario
15.5.2 The transition to chaos via fusion of a stable limit cycle with
an unstable one and the subsequent disappearance of both of
these cycles
15.5.3 The transition to chaos via destruction of a two-dimensional
torus
15.5.4 The Ruelle–Takens scenario
Chapter 16 Examples of self-oscillatory systems with lumped
narameters I 240
16.1 Electronic generator. The van der Pol and Rayleigh equations 246
16.2 The Kaidanovsky-Khaikin frictional generator and the Froude
pendulum
16.3 The Bonhoeffer-yan der Pol oscillator
16.4 A model of glycolysis and a lumped version of the 'brusselator' 253
16.5. A lumped model of the Buraytsev oscillator

16.6	Clock movement mechanisms and the Neimark pendulum. The	
	energetic criterion of self-oscillation chaotization	259
16.7	Self-oscillatory models for species interaction based on the	
, , , ,	Lotka-Volterra equations	263
16.8	Systems with inertial non-linearity	264
10.0	16.8.1 The Pikovsky model	267
16.9	Systems with inertial excitation	267
10.0	16.9.1 The Helmholtz resonator with non-uniformly heated walls	270
	16.9.2 A heated wire with a weight at its centre	272
	16.9.3 A modified 'brusselator'	276
	16.9.4 Self-oscillations of an air cushioned body	277
Chapte	er 17 Examples of self-oscillatory systems with lumped	
	ameters. II	283
17.1	The Rössler and Chua systems	283
17.2	A three-dimensional model of an immune reaction illustrating an	284
173	The simplest model of the economic progress of human society	288
17.0	Models of the vocal source	293
17.5	A lumped model of the 'singing' flame	303
Chapte	er 18 Examples of self-oscillatory systems with high frequency	y
_	ver sources	307
	The Duboshinsky pendulum, a 'gravitational machine', and the	
10.1	Andreev hammer	307
18.2	The Bethenod pendulum, the Papaleksi effect, and the Rytov device . Electro-mechanical vibrators. Capacitance sensors of small	313
10.0	displacements	. 317
Chapt	er 19 Examples of self-oscillatory systems with time delay	322
19.1	Biological controlled systems	. 322
	19.1.1 Models of respiration control	. 323
	19.1.2 The Mackey-Glass model of the process of regeneration of	
	white blood corpuscles (neutrophils)	. 329
	19.1.3 Models of the control of upright human posture	. 333
19.2	2 The van der Pol-Duffing generator with additional delayed feedback	
	as a model of Doppler's autodyne	. 336
19.3	A ring optical cavity with an external field (the Ikeda system)	. 339
Chapt	er 20 Examples of continuous self-oscillatory systems wit	h
lun	nped active elements	34
	The Vitt system. Competition and synchronization of modes	. 34
	2 The Rijke phenomenon	
20.5	A distributed model of the 'singing' flame	. 35

Chapter	21 Examples of self-oscillatory systems with distributed	
active	e elements	354
21.1 L	asers. Competition, synchronization and chaotization of modes.	
C	Optical auto-solitons	354
21.2 T	The Gann generators	368
21.3 Ic	onization waves (striations) in low temperature plasmas	374
2	11.3.1 Inert gases	378
2	11.3.2 Molecular gases	381
21.4 A	A model of the generation of Korotkov's sounds	384
21.5 S	self-oscillations of a bounded membrane resulting from excitation of	202
W	vaves with negative energy	. 595
Cl4	22 Periodic actions on self-oscillatory systems.	
Cnapter	pronization and chaotization of self-oscillations	396
29 1 S	Synchronization of periodic self-oscillations by an external force in the	
22.1 0	van der Pol-Duffing generator. Two mechanisms of synchronization.	
v C	Synchronization as a non-equilibrium phase transition	. 396
999	Synchronization of periodic oscillations in a generator with inertial	
*	con linearity and in more complicated systems	. 401
993	Synchronization of a van der Pol generator with a modulated natural	
f	requency	. 404
22.4	Asynchronous guenching and asynchronous excitation of periodic	
_	realf agaillations	. 409
99 5 (Charting tion of periodic self-oscillations by a periodic external force	. 410
99.6.9	Synchronization of chaotic self-oscillations. The synchronization	
+	threshold and its relation to the quantitative characteristics of the	
ä	attractor	. 412
		414
Chapter	23 Interaction between self-oscillatory systems	
23.1	Mutual synchronization of two generators of periodic oscillations	
23.2	Mutual synchronization of three and more coupled generators of periodic oscillations	. 421
20.0	periodic oscillations	. 423
23.3	Interaction between generators of periodic and chaotic oscillations.	. 424
23.4	Interaction between generators of chaotic oscillations. The notion of	
23.5	synchronization	. 426
Chapter	r 24 Examples of auto-waves and dissipative structures	431
94.1	Auto waves of burning. A model of a kink wave	. 431
94.9	Auto waves in the Fitz Hugh-Nagumo model	. 454
94.9	Auto wayes in a distributed version of the brusselator and in some	
	other models of biological, chemical and ecological systems	. 450
04.4	A .t. annual described by the Kuramoto-Sivashinsky equation and the	
	generalized Kuramoto-Sivashinsky equation	. 440

-	er 25 Convective structures and self-oscillations in fluid. The	
	et of turbulence	444
25.1	Rayleigh-Taylor instability and the initial stage of the excitation of	
	thermo-convection in a plane layer	
	Thermo-convection in a toroidal tube. The Lorenz equations	
25.3	The initial stage of excitation of bio-convection	453
25.4	Onset of turbulence in the flow between two coaxial rotating cylinders.	
	Taylor vortices	456
Chapte	er 26 Hydrodynamic and acoustic waves in subsonic jet and	
	arated flows	463
26.1	The Kelvin–Helmholtz instability	. 463
26.2	Subsonic free jets	. 465
26.3	Sound excitation by an impinging jet. Excitation of edgetones	. 477
26.4	Self-oscillations in open jet return circuit wind tunnels	. 481
26.5	The von Karman vortex wake, Aeolian tones and stalling flutter	. 486
	dix A Approximate methods for solving linear differentia	al
equ	ations with slowly varying parameters	489
	JWKB Method	
	Asymptotic method	
	The Liouville-Green transformation	
A.4	The Langer transformation	. 492
	dix B The Whitham method and the stability of periodic ning waves for the Klein-Gordon equation	494
Bibliog	graphy	499
Index		535