CONTENTS | CONTENTS OF VOLUME II | xi | |---|-------| | TRANSLATOR'S PREFACE | xvii | | AUTHOR'S PREFACE | xix | | NOTATION | xxiii | | INTRODUCTORY MATERIAL | 1 | | I. Analytical theorems | 1 | | 1. Abel's transformation | 1 | | 2. Second mean value theorem | 3 | | 3. Convex curves and convex sequences | 3 | | II. Numerical series, summation | 5 | | 4. Series with monotonically decreasing terms | 5 | | 5. Linear methods of summation | 9 | | 6. Method of arithmetic means [or (C, 1)] | 11 | | 7. Abel's method | 12 | | III. Inequalities for numbers, series and integrals | 16 | | 8. Numerical inequalities | 16 | | 9. Hölder's inequality | 18 | | 10. Minkowski's inequality | 21 | | 11. O- and o-relationships for series and integrals | 22 | | IV. THEORY OF SETS AND THEORY OF FUNCTIONS | 25 | | · 12. On the upper limit of a sequence of sets | 25 | | 13. Convergence in measure | 25 | | 14. Passage to the limit under Lebesgue's integral sign | 26 | | 15. Lebesgue points | 27 | | 16. Riemann-Stieltjes integral | 29 | | 17. Helly's two theorems | 30 | | 18. Fubini's theorem | 31 | | V. Functional analysis | 31 | | 19. Linear functionals in C | 31 | | 20. Linear functionals in $L^p(p > 1)$ | 32 | | 21. Convergence in norm in the spaces L^p | 33 | | VI. THEORY OF APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS | 34 | |--|-----------| | 22. Elementary properties of trigonometric polynomials | 34 | | 23. Bernstein's inequality | 35 | | 24. Trigonometric polynomial of best approximation | 36 | | 25. Modulus of continuity, modulus of smoothness, and integral modulus | | | of continuity | 37 | | CHAPTER I. BASIC CONCEPTS AND THEOREMS IN THE THEORY | Ţ. | | OF TRIGONOMETRIC SERIES | 43 | | 1. The concept of a trigonometric series; conjugate series | 43 | | 2. The complex form of a trigonometric series | 44 | | 3. A brief historical synopsis | 45 | | 4. Fourier formulae | 46 | | 5. The complex form of a Fourier series | 47 | | 6. Problems in the theory of Fourier series; Fourier-Lebesgue series | 48 | | 7. Expansion into a trigonometric series of a function with period 21 | 49 | | 8. Fourier series for even and odd functions | 50 | | 9. Fourier series with respect to the orthogonal system10. Completeness of an orthogonal system | 51 | | 11. Completeness of the trigonometric system in the space L | 54
55 | | 12. Uniformly convergent Fourier series | 58 | | 13. The minimum property of the partial sums of a Fourier series; Bessel's | 20 | | inequality | 59 | | 14. Convergence of a Fourier series in the metric space L^2 | 60 | | 15. Concept of the closure of the system. Relationship between closure and com- | 00 | | pleteness | 61 | | 16. The Riesz-Fischer theorem | 64 | | 17. The Riesz-Fischer theorem and Parseval's equality for a trigonometric system | 64 | | 18. Parseval's equality for the product of two functions | 65 | | 19. The tending to zero of Fourier coefficients | 66 | | 20. Fejér's lemma | 67 | | 21. Estimate of Fourier coefficients in terms of the integral modulus of continuity of the function | 70 | | 22. Fourier coefficients for functions of bounded variation | 71 | | 23. Formal operations on Fourier series | 72 | | 24. Fourier series for repeatedly differentiated functions | 79 | | 25. On Fourier coefficients for analytic functions | 80 | | 26. The simplest cases of absolute and uniform convergence of Fourier series | 83 | | 27. Weierstrass's theorem on the approximation of a continuous function by | | | trigonometric polynomials | 84 | | 28. The density of a class of trigonometric polynomials in the spaces $L^p(p \ge 1)$ | 85 | | 29. Dirichlet's kernel and its conjugate kernel30. Sine or cosine series with monotonically decreasing coefficients | 85 | | 31. Integral expressions for the partial sums of a Fourier series and its conjugate | 87 | | series | 05 | | 32. Simplification of expressions for $S_n(x)$ and $\overline{S}_n(x)$ | 95
100 | | 33. Riemann's principle of localization | 103 | | 34. Steinhaus's theorem | 103 | | CONTENTS | vii | |--|-----| | 35. Integral $\int_{0}^{\infty} [(\sin x)/x] dx$. Lebesgue constants | 105 | | 36. Estimate of the partial sums of a Fourier series of a bounded function | 110 | | 37. Criterion of convergence of a Fourier series | 111 | | 38. Dini's test | 113 | | 39. Jordan's test | 114 | | 40. Integration of Fourier series | 116 | | 41. Gibbs's phenomenon | 117 | | 42. Determination of the magnitude of the discontinuity of a function from | | | its Fourier series | 121 | | 43. Singularities of Fourier series of continuous functions. Fejér polynomials | 123 | | 44. A continuous function with a Fourier series which converges everywhere but not uniformly | 125 | | 45. Continuous function with a Fourier series divergent at one point (Fejér's | 123 | | example) | 127 | | 46. Divergence at one point (Lebesgue's example) | 128 | | 47. Summation of a Fourier series by Fejér's method | 133 | | 48. Corollaries of Fejér's theorem | 137 | | 49. Fejér-Lebesgue theorem | 139 | | 50. Estimate of the partial sums of a Fourier series | 141 | | 51. Convergence factors | 143 | | 52. Comparison of Dirichlet and Fejér kernels | 143 | | 53. Summation of Fourier series by the Abel-Poisson method | 149 | | 54. Poisson kernel and Poisson integral | 150 | | 55. Behaviour of the Poisson integral at points of continuity of a function | 152 | | 56. Behaviour of a Poisson integral in the general case | 154 | | 57. The Dirichlet problem | 159 | | 58. Summation by Poisson's method of a differentiated Fourier series | 160 | | 59. Poisson-Stieltjes integral | 162 | | 60. Fejér and Poisson sums for different classes of functions | 164 | | 61. General trigonometric series. The Lusin-Denjoy theorem | 173 | | 62. The Cantor-Lebesgue theorem | 174 | | 63. An example of an everywhere divergent series with coefficients tending to zero | 176 | | 64. A study of the convergence of one class of trigonometric series | 177 | | 65. Lacunary sequences and lacunary series | 178 | | 66. Smooth functions | 181 | | 67. The Schwarz second derivative | 186 | | 68. Riemann's method of summation | 189 | | 69. Application of Riemann's method of summation to Fourier series | 192 | | 70: Cantor's theorem of uniqueness | 193 | | 71. Riemann's principle of localization for general trigonometric series | 195 | | 72. du Bois-Reymond's theorem | 201 | | 73. Problems | 204 | | CHAPTER II. FOURIER COEFFICIENTS | 209 | | 1. Introduction | 209 | | 2. The order of Fourier coefficients for functions of bounded variation. Criterion | | | for the continuity of functions of bounded variation | 210 | | 3. Concerning Fourier coefficients for functions of the class Lip α | 215 | | 4. The relationship between the order of summability of a function and the | | | Fourier coefficients | 217 | | The generalization of Parseval's equality for the product of two functions The rate at which the Fourier coefficients of summable functions tend to zero Auxiliary theorems concerning the Rademacher system Absence of criteria applicable to the moduli of coefficients Some necessity conditions for Fourier coefficients Salem's necessary and sufficient conditions The trigonometric problem of moments Coefficients of trigonometric series with non-negative partial sums Transformation of Fourier series Problems | 225
228
230
233
236
239
242
244
252
254 | |--|--| | CHAPTER III. THE CONVERGENCE OF A FOURIER SERIES AT A | | | POINT | 260 | | 1. Introduction | 260 | | 2. Comparison of the Dini and Jordan tests | 260 | | 3. The de la Vallée-Poussin test and its comparison with the Dini and Jordan | | | tests | 261 | | 4. The Young test | 263 | | 5. The relationship between the Young test and the Dini, Jordan and de la Vallée- | | | Poussin tests | 266 | | 6. The Lebesgue test | 269 | | 7. A comparison of the Lebesgue test with all the preceding tests8. The Lebesgue-Gergen test | 274 | | 9. Concerning the necessity conditions for convergence at a point | 279 | | 10. Sufficiency convergence tests at a point with additional restrictions on the | 285 | | coefficients of the series | 289 | | 11. A note concerning the uniform convergence of a Fourier series in some | 209 | | interval | 292 | | 12. Problems | 293 | | | _,_ | | CHAPTER IV. FOURIER SERIES OF CONTINUOUS FUNCTIONS | 296 | | 1. Introduction | 296 | | 2. Sufficiency conditions for uniform convergence, expressed in terms of Fourier | | | coefficients | 297 | | 3. Sufficiency conditions for uniform convergence in terms of the best approx- | | | imations | 300 | | 4. The Dini-Lipschitz test | 301 | | 5. The Salem test. Functions of Φ -bounded variation | 305 | | 6. The Rogosinski identity | 310 | | 7. A test of uniform convergence, using the integrated series | 314 | | 8. The generalization of the Dini-Lipschitz test (in the integral form) | 315 | | 9. Uniform convergence over the interval [a, b]10. The Sâto test | 319 | | | 322 | | 11. Concerning uniform convergence near every point of an interval | 326 | | 12. Concerning operations on functions to obtain uniformly convergent Fourier series | 227 | | 13. Concerning uniform convergence by rearrangement of the signs in the terms | 327 | | of the series | 330 | | 14. Extremal properties of some trigonometric polynomials | 332 | | 15. The choice of arguments for given moduli of the terms of the series | 334 | | CONTENTS | | |----------|--| |----------|--| | CONTENTS | ix | |--|---| | 16. Concerning Fourier coefficients of continuous functions 17. Concerning the singularities of Fourier series of continuous functions 18. A continuous function with a Fourier series non-uniformly convergent in any interval | | | 19. Concerning a set of points of divergence for a trigonometric series20. A continuous function with a Fourier series divergent in a set of the power of | 342
344 | | the continuum 21. Divergence in a given denumerable set 22. Divergence in a set of the power of the continuum for bounded partial sums 23. Divergence for a series of $f^2(x)$ 24. Sub-sequences of partial sums of Fourier series for continuous functions 25. Resolution into the sum of two series convergent in sets of positive measure 26. Problems | 345
346
348
350
354
357
358 | | CHAPTER V. CONVERGENCE AND DIVERGENCE OF A FOURIER SERIES IN A SET | 262 | | Introduction The Kolmogorov-Seliverstov and Plessner theorem | 362
362
363 | | 3. A convergence test expressed by the first differences of the coefficients 4. Convergence factors 5. Other forms of the condition imposed in the Kolmogorov-Seliverstov and | 369
370 | | Plessner theorem 6. Corollaries of Plessner's theorem 7. Concerning the equivalence of some conditions expressed in terms of integrals and in terms of series | 371
373 | | 8. A test of almost everywhere convergence for functions of L^p(1 ≤ p ≤ 2) 9. Expression of the conditions of almost everywhere convergence in terms of the quadratic moduli of continuity and the best approximations | 375
379 | | 10. Tests of almost everywhere convergence in an interval of length less than 2π 11. Indices of convergence 12. The convex capacity of sets | 381
384
389 | | 13. A convergence test, using an integrated series 14. The Salem test 15. The Marcinkiewicz test | 398
414
416
417 | | 16. Convergence test expressed by the logarithmic measure of the set17. Fourier series, almost everywhere divergent18. The impossibility of strengthening the Marcinkiewicz test | 421
430
443 | | 19. Concerning the series conjugate to an almost everywhere divergent Fourier series20. A Fourier series, divergent at every point | 447
455 | | 21. Concerning the principle of localization for sets22. Concerning the convergence of a Fourier series in a given set and its divergence outside it | 465
470 | | 23. The problem of convergence and the principle of localization for Fourier series with rearranged terms24. Problems | 480 | | 24. I TOUGHS | 483 | X CONTENTS INDEX | CHAPTER VI. "ADJUSTMENT" OF FUNCTIONS IN A SET OF SMALL | _ | |---|---| | MEASURE | 488 | | Introduction Two elementary lemmas Lemma concerning the Dirichlet factor "Adjustment" of a function to obtain a uniformly convergent Fourier series The strengthened C-property Problems connected with the "adjustment" of functions "Adjustment" of a summable function outside a given perfect set Problems | 488
490
500
510
511
512
526 | | APPENDIX | | | to Chapter II | 528 | | The Phragmén-Lindelöf principle Modulus of continuity and modulus of smoothness in L^p(p ≥ 1) A converse of the Hölder inequality The Banach-Steinhaus theorem | 528
528
529
531 | | to Chapter IV | 532 | | 5. Categories of sets6. Riemann's and Carathéodory's theorems7. The connection between the modulus of continuity and the best approximation | | | of a function | 533 | | to Chapter V | 536 | | 8. μ -measures and integrals | 536 | | BIBLIOGRAPHY | 537 | 549