CONTENTS

Chapter 1. INTRODUCTION

	1. Stability as a property of a family of systems	ì
	2. The families of systems considered in the problem of absolute	
	stability	
	3. Selecting the most natural rannies of systems	
	4. Introducing new lamines of systems	
	5. The concept of hyperstability	
	6. Indications on the use of the monograph	,
	Chapter 2. CLASSES OF EQUIVALENT SYSTEMS	
§ 1.	Equivalence classes for quadratic forms with relations between the variables	
	1. Transformations of quadratic forms with relations between the	
	variables	
	2. Successive transformations	
	3. More about the group Q	
	4. Partitioning of the set \mathcal{E} into classes	
	5. Other equivalence classes	9
§ 2.	Classes of single-input systems	
	1. The system	
	2. Transformations	
	3. Some particular transformations	
	4. The polarized system and its properties	7
§ 3.	The characteristic polynomial of single-input systems	
	1. The characteristic function of single-input systems	
	2. The characteristic polynomial and its properties 4	1
	3. Relations between the characteristic functions of systems belonging	
	to the same class	2
	4 Invariance of the characteristic polynomial under the transforma-	
	tions introduced in § 2	3
	PION MAN O MAN A	

	conditions under which all systems with the same characteristic polynomial belong to the same class	
	2. A one-to-one correspondence between the characteristic polynomials and certain particular systems	45 46 48 49 50
§ 5.	Equivalence classes for multi-input systems	
	 Definition and properties of the classes of multi-input systems. The characteristic function	54 58 61 63 64
§ 6.	Equivalence classes for discrete systems	
	 Definition of the classes of discrete systems	69 72 74
§ 7.	Equivalence classes for systems with time dependent coefficients	75
	Chapter 3. POSITIVE SYSTEMS	
§ 8.	Single-input positive systems	
	1. Definition of single-input positive systems	79 80 82 83 89
	6. Special forms for completely controllable single-input positive systems	θſ
§ 9.	6. Special forms for completely controllable single-input positive	ઝા
§ 9.	6. Special forms for completely controllable single-input positive systems	90 93 99 100
	6. Special forms for completely controllable single-input positive systems	97 99 106
	6. Special forms for completely controllable single-input positive systems	97 99 106

12.	Nonlinear positive systems
	Chapter 4. HYPERSTABLE SYSTEMS AND BLOCKS
13.	General properties of the hyperstable systems
	1. Linear systems of class \mathcal{H}
	2. Hypotheses concerning the systems of class \mathscr{H}
	3. Other properties of the systems belonging to class ${\mathcal H}$
	4. Definition of the property of hyperstability
	5. A consequence of property H_s
	6. A sufficient condition of hyperstability
	7. Hyperstability of systems which contain "memoryless elements".
	8. The "sum" of two hyperstable systems
	9. Hyperstable blocks and their principal properties
14.	Single-input hyperstable systems
15.	Simple hyperstable blocks
16.	Multi-input hyperstable systems
17.	Multi-input hyperstable blocks
18.	Discrete hyperstable systems and blocks
19.	Hyperstability of more general systems
20.	Integral hyperstable blocks
	1. Description of completely controllable integral blocks
	2. Definition of the hyperstable integral blocks
	3. A method of obtaining the desired inequalities
	4. Hyperstability theorem for integral blocks
	5. Multi-input integral blocks
21.	Lemma of I. Barbalat and its use in the study of asymptotic stability
22.	Other methods for studying asymptotic stability
23.	Conditions of asymptotic stability of single-input and multi-input systems with constant coefficients

Chapter 5. APPLICATIONS

§ 25. Inclusion of the problem of absolute stability in a problem of hyper- stability	
1. The absolute stability problem for systems with one nonlinearity.	240
2. Definition of an auxiliary problem of hyperstability	242
3. A frequency criterion	245
4. Discussion of the condition of minimal stability	247
5. Sufficient conditions for absolute stability	250
6. Sufficient conditions for asymptotic stability	251
7. Simplifying the frequency criterion	255
8. Using hyperstable blocks to treat the problem of absolute stability.	257
9. Determining the largest sector of absolute stability	261
10. Other generalizations of the problem of absolute stability	263
§ 26. Determination of some Liapunov functions	
1. Necessary conditions for the existence of Liapunov functions of	
the Lur'e-Postnikov type	264
2. Functions of the Liapunov type for systems with a single non-	
linearity	270
§ 27. Stability in finite domains of the state space	
1. An auxiliary lemma	272
2. Stability in the first approximation	273
§ 28. Stability of systems containing nuclear reactors	275
$\S~29$. Stability of some systems with non-linearities of a particular form	
1. Systems with monotone non-linear characteristics	279
2. Stability of a system with a non-linearity depending on two	
variables	28
§ 30. Optimization of control systems for integral performance indices	28
Appendix A. CONTROLLABILITY; OBSERVABILITY; NONDEGENERATION	
§ 31. Controllability of single-input systems	
1. Definition of the complete controllability of single-input systems .	29
2. Theorem of complete controllability of single-input systems	29

	3. Discussion	297
	4. Proof of the theorem	300
	5. Relations between single-input completely controllable systems .	310
§ 32.	Single-output completely observable systems	312
§ 33.	Nondegenerate systems	
	1. Definition of the property of nondegeneration and statement	
	of the theorem of nondegeneration	314
	2. Remarks on the theorem of nondegeneration	315
	3. Proof of the theorem of nondegeneration	315
	4. Bringing nondegenerate systems into the Jordan-Lur'e-Lefschetz	
	form	318
§ 34.	Controllability of multi-input systems	
	1. Definition and theorem of the complete controllability of multi-	
	input systems	319
	2. Proof of Theorem 1	322
	3. Other properties of completely controllable multi-input systems	328
§ 35.	Completely observable multi-output systems	330
§ 36.	Special forms for multi-input blocks	332
	Appendix B. FACTORIZATION OF POLYNOMIAL MATRICES	
§ 37.	Auxiliary propositions	350
§ 38.	Theorem of factorization on the unit circle	
	1. Statement of the theorem	356
	2. Preliminary remarks	357
	3 Some additional assumptions	359
	4. An asymmetrical factorization of the matrix $\lambda''X(\lambda)$	360
	5. A family of factorization relations	361
	6 A special way of writing polynomial matrices	362
	7 A nonsingular factorization	363
	8 Properties of the nonsingular factorizations	365
	9. Bringing the nonsingular factorization to the form required in	
	Theorem 1	367
	10. More about Assumption (e)	369
	11. Eliminating restrictions (C) and (e)	370

§ 39.	The theorem of factorization on the imaginary axis	
	1. Statement of the theorem	76
	2. Definition of a matrix factorizable on the unit circle	77
	3. Relations between $\psi(\sigma)$ and $\rho(\lambda)$	78
		79
	Appendix C. POSITIVE REAL FUNCTIONS	81
	Appendix D. THE PRINCIPAL HYPERSTABLE BLOCKS 3	891
	Appendix E. NOTATIONS	393
	Appendix F. BIBLIOGRAPHY	395