Inhaltsverzeichnis

Vorwort XIX

1	Einleitung 1
1.1	Klassische Mechanik und Quantenmechanik 1
1.2	Aufbau des Bands "Quantenmechanik 1" 4
1.3	Grenzen der Quantenmechanik 7
2	Historisch-heuristische Einführung in die Quantenmechanik 9
2.1	Quanteneigenschaften des Strahlungsfelds 9
2.1.1	Strahlung eines schwarzen Körpers 9
2.1.1.1	Experimenteller Befund 9
2.1.1.2	Herleitung der Strahlungsformel für den schwarzen Körper 11
2.1.2	Der äußere lichtelektrische Effekt 18
2.1.3	Compton-Effekt 20
2.2	Quanteneigenschaften der Materie 24
2.2.1	Die spezifische Wärme fester Körper 25
2.2.2	Diskrete Atomzustände 27
2.2.2.1	Das Kombinationsprinzip der Frequenzen 27
2.2.2.2	Franck-Hertz'scher Stoßversuch 28
2.2.3	Bohr'sches Atommodell 30
2.2.3.1	Qualitative Formulierung der Bohr'schen Postulate 31
2.2.3.2	Quantitative Formulierung der Bohr'schen Postulate 31
2.2.3.3	Bohr'sches Wasserstoffatommodell 33
2.2.3.4	Strahlungsspektrum des Wasserstoffatoms 35
2.2.3.5	Kritik am Bohr'schen Atommodell 35
2.2.4	Das Korrespondenzprinzip 36
2.3	Welleneigenschaften der Materie 37
2.3.1	De Broglie's Materiewellen 37
*	Mit einem Stern sind Themen und Kapitel gekennzeichnet, die eher

zusätzlich für die Masterausbildung vorgesehen sind

2.3.2	Wellenpakete, Wahrscheinlichkeiten, Erwartungswerte 39
2.3.2.1	Wellen und Wellenpakete 39
2.3.2.2	Born'sche Wahrscheinlichkeitsinterpretation 44
2.3.3	Erwartungswerte 45
2.3.3.1	Ortsdarstellung 45
2.3.3.2	Impulsdarstellung 50
2.3.4	Unschärferelation, Operatoren und Vertauschungsrelationen 51
2.3.4.1	Unschärferelation 51
2.3.4.2	Vertauschungsrelationen 53
2.3.4.3	Operatoren 54
2.3.5	Verallgemeinerung auf drei Dimensionen 55
2.3.6	Vielteilchensysteme 57
2.4	Grundzüge der Wellenmechanik 58
	Aufgaben 62
3	Die Schrödinger-Gleichung 65
3.1	Heuristische Formulierung der Schrödinger-Gleichung 65
3.2	Stationäre Lösung der Schrödinger-Gleichung 68
3.3	Die Kontinuitätsgleichung für die Wahrscheinlichkeit 69
3.4	Impulsdarstellung der Schrödinger-Gleichung 71
3.5	Lösung der Schrödinger-Gleichung für einfache Potentiale 73
3.5.1	Schrödinger-Gleichung im eindimensionalen Raum 73
3.5.2	Übersicht über das Energie-Eigenwertproblem 74
3.5.2.1	Gebundene Partikel 74
3.5.2.2	Einseitig und zweiseitig ungebundene Partikel 76
3.5.3	Stetigkeitseigenschaften der Wellenfunktion 78
3.5.3.1	Anschlussbedingungen bei endlichem Potentialsprung 78
3.5.3.2	Anschlussbedingungen bei δ -förmigem Potential 79
3.5.4	Die Potentialstufe 80
3.5.4.1	Problemstellung 80
3.5.4.2	Lösungen für $x < 0$ 81
3.5.4.3	Lösungen für $x > 0$ 82
3.5.4.4	Stetigkeitsbedingungen 82
3.5.4.5	Diskussion 84
3.5.5	Der Potentialwall 87
3.5.6	Der Potentialgraben 90
3.5.6.1	Das kontinuierliche Spektrum 90
3.5.6.2	Das diskrete Energiespektrum 95
3.5.6.3	Unendlich tiefer Potentialtopf 100
	Aufgaben 102

4	Grundlagen der Quantenmechanik 105
4.1	Der quantenmechanische Zustand 105
4.2	Zustandsvektoren im Hilbert-Raum 107
4.2.1	Elemente des Hilbert-Raums 107
4.2.2	Linearität des Hilbert-Raums 107
4.2.3	Skalarprodukt von Zustandsvektoren 109
4.2.3.1	Definition und Eigenschaften 109
4.2.3.2	Norm eines Vektors 110
4.2.3.3	Orthogonalität von Vektoren 110
4.2.3.4	Die Schwarz'sche Ungleichung 110
4.2.4	Separabilität und Vollständigkeit des Hilbert-Raums 112
4.2.4.1	Separabilität 112
4.2.4.2	Basis im Hilbert-Raum 112
4.2.4.3	Vollständigkeit und Darstellung eines Zustandsvektors 114
4.2.4.4	Skalarprodukt in Komponentendarstellung 115
4.2.4.5	Schmidt'sches Orthogonalisierungsverfahren 115
4.3	Operatoren im Hilbert-Raum 117
4.3.1	Definition eines Operators 117
4.3.2	Eigenschaften von Operatoren 118
4.3.2.1	Lineare Operatoren 118
4.3.2.2	Beschränkte Operatoren 118
4.3.2.3	Operatorsummen 118
4.3.2.4	Produkte von Operatoren 119
4.3.2.5	Adjungierte Operatoren 119
4.3.2.6	Hermitesche und antihermitesche Operatoren 120
4.3.2.7	Einheitsoperator und Projektionsoperatoren 120
4.3.2.8	Unitäre Operatoren 121
4.3.3	Darstellung eines Operators in einem vollständigen
	Orthonormalsystem 121
4.3.4	Eigenwerte und Eigenvektoren hermitescher Operatoren 123
4.3.4.1	Eigenwertgleichung, Eigenwerte und Eigenvektoren 123
4.3.4.2	Eigenwerte hermitescher Operatoren 124
4.3.4.3	Diskretes Eigenwertspektrum, Entartung 124
4.3.4.4	Orthogonalität und Vollständigkeit von Eigenvektoren 125
4.3.4.5	Kontinuierliche Eigenwerte 127
4.3.4.6	Gemischtes Spektrum 129
4.4	Dirac-Schreibweise 130
4.4.1	Duale Vektoren 130
4.4.2	Produkte von Dirac-Vektoren 130
4.4.2.1	Skalares Produkt 130
4.4.2.2	Dyadisches Produkt 131
4.4.3	Projektionsoperatoren und Vollständigkeitsrelation 131
_	

4 4 0 1	D 110
4.4.3.1	Projektionsoperatoren 131
4.4.3.2	Vollständigkeitsrelation 132
4.4.4	Darstellung von Operatoren 133
4.5	Anschluss an die physikalische Realität 136
4.5.1	Observable 136
4.5.1.1	Observable und Operatoren 136
4.5.1.2	Basisobservable und zusammengesetzte Observable 137
4.5.2	Vertauschungsrelationen 138
4.5.2.1	Vertauschungsrelationen für Basisobservable 138
4.5.2.2	Vertauschungsrelationen für zusammengesetzte Operatoren 139
4.5.3	Eigenwertproblem der Basisobservablen 141
4.5.4	Orts- und Impulsdarstellung eines Zustands 144
4.5.5	Orts- und Impulsdarstellung der Basisoperatoren \hat{x} und \hat{p} 146
4.5.6	Orts- und Impulsdarstellung zusammengesetzter Operatoren 148
4.5.7	Quantenmechanik in einer beliebigen Basis 149
4.5.7.1	Bestimmung neuer Basen 149
4.5.7.2	Transformation der Zustände, Erhaltung der Information 150
4.5.7.3	Transformation der Operatoren in die neue Darstellung 152
4.6	Erwartungswert, Streuung, Messwert 152
4.7	Zeitentwicklung quantenmechanischer Systeme 155
4.7.1	Zeitentwicklungsoperatoren 155
4.7.2	Schrödinger-Bild 157
4.7.3	Heisenberg-Bild 158
4.7.4	Wechselwirkungsbild 159
4.7.5	Ehrenfest'sche Theoreme 161
4.7.6	Erhaltungsgrößen 162
4.8	Vertauschbare Operatoren 163
4.8.1	Eigenvektoren bei vertauschbaren Operatoren 163
4.8.2	Vollständiger Satz vertauschbarer Operatoren 165
4.9	Verallgemeinerte Unschärferelation 166
4.9.1	Die Unschärferelation 166
4.9.2	Beispiele für die Unschärferelation 168
4.9.2.1	Heisenberg'sche Unschärferelation 168
4.9.2.2	Kinetische und potentielle Energie 168
4.9.2.3	Komponenten des Drehimpulses 169
4.9.2.4	Energie-Zeitunschärfe 170
4.9.3	*Zustände minimaler Unschärfe 171
4.9.4	Diskussion der Unschärferelation 174
4.9.4.1	Elektronenbeugung am Spalt 175
4.9.4.2	Beobachtung eines Elektrons in einem Mikroskop 176
4.10	Wahrscheinlichkeiten in der Quantenmechanik 177
4.10.1	Dichteoperator 179
4.40.4	

4.10.2	*Wahrscheinlichkeitsoperator für Observable 180
4.10.2.1	*Klassische charakteristische Funktion und
	Wahrscheinlichkeitsdichte 180
4.10.2.2	*Quantenmechanische charakteristische Funktion und Operator für
	die Wahrscheinlichkeitsdichte 181
4.10.2.3	*Entwicklung nach Eigenfunktionen 182
	*Beispiel: Kontinuierliches Spektrum 184
	*Beispiel: Messung am δ -Potential 185
4.10.3	*Verteilungsfunktion für mehrere Operatoren 189
4.10.3.1	*Vertauschbare Operatoren 189
	*Nicht vertauschbare Operatoren 189
4.11	Axiome der Quantenmechanik 191
	Aufgaben 193
5	Der lineare harmonische Oszillator 197
5.1	Schrödinger-Gleichung 197
5.1.1	Zeitunabhängige Schrödinger-Gleichung 197
5.1.2	Dimensionslose Variable 198
5.2	Beschränktheit der Energieeigenwerte und Grundzustand 199
5.2.1	Beschränktheit der Energieeigenwerte 199
5.2.2	Grundzustand 200
5.3	Eigenwertspektrum 201
5.4	Normierung der Eigenfunktionen 204
5.5	Ortsdarstellung der ersten Eigenfunktionen 205
5.6	*Vollständigkeitsrelation 207
5.7	Beispiele für das Rechnen mit Erzeugungs- und
	Vernichtungsoperatoren 211
5.7.1	Matrixelemente des Ortsoperators 211
5.7.2	Aufenthaltswahrscheinlichkeitsverteilung im Grundzustand 212
5.8	Klassische und quantenmechanische
	Aufenthaltswahrscheinlichkeit 214
5.9	Das zeitliche Verhalten 216
	Aufgaben 218
6	Quantenmechanische Bewegung im Zentralfeld 221
6.1	Klassische und quantenmechanische Bewegung im Zentralfeld 221
6.1.1	Das Zentralfeld 221
6.1.2	Klassische Bewegung im zentralsymmetrischen Potential 223
6.1.3	Quantenmechanische Bewegung im Zentralfeld 224
6.2	Vertauschbarkeit von \hat{L} und \hat{H} im zentralsymmetrischen Feld 227
6.2.1	Definition des Drehimpulsoperators 227
622	Vertauschbarkeit von Î und Ĥ 227

6.3	Quantenmechanische Zerlegung des Operators \hat{p}^2 229
6.4	Schrödinger-Gleichung für den Radialanteil 232
6.5	Drehimpulsalgebra 233
6.5.1	Vertauschungsrelationen 233
6.5.1.1	Kommutator für die Komponenten des Drehimpulses 233
6.5.1.2	Vertauschungsrelation mit dem Quadrat des
	Drehimpulsoperators 235
6.5.2	Algebraische Bestimmung der Eigenwerte und Eigenzustände von
	L^2 und L_z 235
6.5.3	Das Vektormodell 240
6.5.4	Ortsdarstellung 242
6.5.4.1	Operatoren 242
6.5.4.2	Eigenfunktionen für $m = l$ 243
6.5.4.3	Normierung 244
6.5.4.4	Eigenfunktionen für $m \le l$ 244
6.5.5	Diskussion der Drehimpuls-Eigenzustände 246
6.6	Lösung der Schrödinger-Gleichung für den Radialanteil: das
	Wasserstoffproblem 254
6.6.1	Spezialisierung auf das Coulomb-Potential 254
6.6.2	Verhalten der Lösung für $ ho\ll 1$ 254
6.6.3	Verhalten der Lösung für $\rho \to \infty$ 255
6.6.4	Vollständiger Lösungsansatz 256
6.6.5	Normierbarkeit der Lösung 257
6.6.6	Energieeigenwerte 258
6.6.7	Eigenfunktionen 259
6.7	Diskussion der Zustandsfunktionen 260
6.8	Entartung beim Wasserstoffproblem 264
	Aufgaben 266
7	Näherungsmethoden zur Lösung quantenmechanischer Probleme 26
7.1	Einleitung 269
7.2	Zeitunabhängige (Schrödinger'sche) Störungstheorie 271
7.2.1	Störungstheorie für diskrete Energieniveaus ohne Entartung 271
7.2.1.1	Störungstheorie erster Ordnung 273
7.2.1.2	Störungstheorie zweiter Ordnung 274
7.2.1.3	Zusammenfassung der Ergebnisse 277
7.2.1.4	Gültigkeit der Störungsrechnung 278
7.2.2	Störungstheorie mit Entartung 279
7.2.2.1	Problemstellung 279
7.2.2.2	Bestimmung der symmetrieangepassten Eigenvektoren 280
7.2.3	Anwendung der zeitunabhängigen Störungstheorie:
	Stark-Effekt 282

8	Bewegung von Teilchen im elektromagnetischen Feld 335
	Aufgaben 332
7.7.3	*Bohr'sche Quantisierungsbedingung 330
7.7.2.4	*Anschlussbedingungen 329
7.7.2.3	*Eigenschaften der Airy-Funktion 328
7.7.2.2	*Verhalten in der Umgebung eines Umkehrpunkts 326
7.7.2.1	*Die Wellenfunktion 324
7.7.2	*Quasiklassische Näherung im eindimensionalen Fall 324
7.7.1	*Quasiklassische Wellenfunktion 322
7.7	*Die WKB-Methode 322
	Oszillators 321
7.6.2	Beispiel: Abschätzung für den Grundzustand des harmonischen
7.6.1	Das Variationsprinzip 318
7.6	Das Ritz'sche Variationsprinzip 318
7.5.3	Tunneleffekt 317
7.5.2	Bestimmung der Energiewerte 314
7.5.1	Energie und Wellenfunktion 312
7.5	Das Wasserstoffmolekülion, Tunneleffekt 312
7.4.4.5	Diskussion 311
7.4.4.4	Beweis des f-Summen-Satzes 310
7.4.4.3	Quantenmechanische Dispersionstheorie 307
7.4.4.2	Klassische Dispersionstheorie 306
7.4.4.1	Störungstheoretischer Ausdruck für die Wellenfunktion 304
7.4.4	Zeitlich anhaltende Störung mit adiabatischem Einschalten 304
7.4.3.3	Auswahlregeln 303
7422	Störung) 301
7.4.3.2	Überlagerung von Wellen verschiedener Frequenz (inkohärente
	Monochromatische Störung 297
7.4.3 7.4.3.1	Zeitlich anhaltende Störung. Plötzliches Einschalten 297
7.4.2	Kurzzeitig wirksame Störungen 295
7.4.2	Hamilton-Operatoren 293
7.4.1	Schrödinger-Gleichung für zeitabhängige
	Zeitabhängige (Dirac'sche) Störungstheorie 293
7.3 7.4	*Die Methode der kanonischen Transformation 289
7.2.3.4	Diskussion 286 *Dia Mathada dan kananiashan Transformation 200
7224	Zustand 285
7.2.3.3	Störungstheorie mit Entartung für den ersten angeregten
7.2.3.2	Störungstheorie ohne Entartung für den Grundzustand 284
7.2.3.1	Losung des ungestorten Problems 283
/ / 4	LOCUBE DE UBERCHOPHEN PRANIAMA 707

Die Schrödinger-Gleichung von Teilchen im elektromagnetischen

8.1

Feld 335

8.1.1	Die Schrödinger-Gleichung in der Ortsdarstellung 335
8.1.2	Kontinuitätsgleichung und Wahrscheinlichkeitsstromdichte 336
8.1.3	Eichtransformation 337
8.1.4	*Aharonov-Bohm-Effekt 341
8.2	Freie Elektronen im homogenen Magnetfeld und
	Landau-Niveaus 346
8.3	*Magnetfeld und elektronische Zustandsdichte im Festkörper 349
8.3.1	*Bewegung von Elektronen ohne Magnetfeld 349
8.3.2	*Bewegung von Elektronen im Magnetfeld 351
8.3.2.1	*Bestimmung des Entartungsgrads 352
8.3.2.2	*Abschätzung realistischer Entartungsgrade 353
8.3.2.3	*Zustandsdichte 353
8.3.2.4	*Diskussion der Ergebnisse 355
8.3.2.5	*Effekt der Bewegung in z-Richtung und Einfluss der
	Temperatur 357
8.3.3	*Experimentelle Bestätigung der Landau-Niveaus 357
8.3.3.1	*Zyklotronresonanz 357
8.3.3.2	*Optischer Nachweis von Landau-Niveaus 358
8.3.3.3	*Der de Haas-van Alphen-Effekt 358
8.3.3.4	*Der Shubnikov-de Haas-Effekt 359
8.4	Gebundene Elektronen im statischen Magnetfeld. Normaler
	Zeeman-Effekt 359
	Aufgaben 364
9	Spin und magnetisches Moment des Elektrons 367
9.1	Experimentelle Grundlage 367
9.1.1	Stern-Gerlach-Versuch 367
9.1.2	Feinstruktur der Spektrallinien 368
9.1.3	Spinhypothese von Uhlenbeck und Goudsmit 369
9.1.4	Einstein-de Haas-Versuch 372
9.2	Mathematische Beschreibung des Spins 372
9.2.1	Zustandsvektoren für Spin 1/2-Teilchen 372
9.2.2	Darstellung der Spinoperatoren 375
9.2.3	*Transformation von Spinoren 379
9.2.3.1	*Koordinatentransformation 379
9.2.3.2	*Spinortransformation 380
9.2.3.3	*Drehung um die z-Achse 382
9.3	Zusammensetzung von Drehimpulsen 383
9.3.1	Bahndrehimpuls 383
9.3.2	Spindrehimpuls 383
9.3.3	Gesamtdrehimpuls 383
9.3.4	Eigenzustände zu L ² L ₂ S ² S ₂ 384
7 1.4	- EDECHAUSIONNE AU L L 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3

9.3.5	Eigenzustände zu \hat{J}^2 , \hat{L}^2 , \hat{S}^2 und \hat{J}_z 385
9.3.6	Eigenfunktionen zu J^2 , L_1^2 , L_2^2 , J_z 387
9.4	Pauli-Gleichung 388
9.4.1	Heuristische Ableitung 388
9.4.2	*Konzept der ordnungslinearisierten Evolutionsgleichungen 389
9.4.2.1	*Minimale Kopplung 389
9.4.2.2	*Ordnungslinearisierte Schrödinger-Gleichung 392
9.4.2.3	*Elektron im elektromagnetischen Feld 397
9.4.3	Spin-Bahn-Kopplung 398
9.4.4	Wasserstoffatom im homogenen magnetischen Feld 399
9.5	*Feinstrukturaufspaltung ohne Magnetfeld 400
9.6	*Elektronen im schwachen Magnetfeld (anomaler
	Zeeman-Effekt) 405
9. <i>7</i>	*Wasserstoffatom im starken Magnetfeld
	(Paschen-Back-Effekt) 409
	Aufgaben 412
10	Vielteilchensysteme 415
10.1	Erhaltungssätze 415
10.1.1	Schrödinger-Gleichung 415
10.1.2	Gesamtimpuls und Impulserhaltung 416
10.1.3	Gesamtdrehimpuls 417
10.2	Wechselwirkungsfreiheit und Unabhängigkeit 418
10.2.1	Teilchensysteme ohne Wechselwirkung 418
10.2.2	Austauschentartung 420
10.3	Identische quantenmechanische Teilchen 421
10.3.1	Wellenfunktionen identischer Teilchen 421
10.3.2	Wellenfunktionen für wechselwirkungsfreie Bosonen und
	Fermionen 423
10.3.3	Pauli-Prinzip 424
10.4	*Die Struktur des Hilbert-Raums für ein System aus N Teilchen 424
10.4.1	*Einleitung 424
10.4.2	*Hilbert-Raum für ein N-Teilchensystem 425
10.4.3	*Operatoren in Produkt-Räumen 426
10.4.4	*Identische Teilchen 427
10.5	*Näherungsverfahren für Teilchensysteme mit
	Wechselwirkung 427
10.5.1	*Störungstheorie: Helium-Atom 427
10.5.2	*Hartree-Verfahren 431
10.5.3	*Hartree-Fock-Verfahren 434
10.6	Bändermodell des Festkörpers 434

10.6.1	Reduktion des Vielteilchenproblems auf ein
10.6.2	Einteilchenproblem 434 Bloch'sches Theorem 436
10.6.2	
10.0.3	Eigenfunktionen in einem gitterperiodischen Potential 437 Aufgaben 443
	Aulgaben 445
11	*Konzeptionelle Probleme der Quantenmechanik 447
11.1	*Determinismus und Wahrscheinlichkeit 447
11.1.1	*Unschärfe und Messergebnis 447
11.1.2	*Das Doppelspaltexperiment 449
11.1.3	*Stern-Gerlach-Versuche 451
11.1.4	*Renninger's Argument 453
11.2	*Der Kollaps der Wellenfunktion 454
11.2.1	*de Broglie's Paradoxon 454
11.2.2	*Schrödinger's Katze 457
11.2.3	*Wigner's Freund 457
11.2.4	*Subjektive Theorien 458
11.2.5	*Feynman's Summation der Möglichkeiten 458
11.2.6	*Konzept der klassischen Messung von Landau und Lifschitz 459
11.2.7	*Kopenhagener Interpretation 459
11.2.8	*Ensembletheorien 460
11.2.9	*Many-World-Theorien 460
11.3	*Die Elemente der physikalischen Realität 461
11.3.1	*Das Problem der vollständigen Theorie 461
11.3.2	*Das EPR-Modell 462
11.3.3	*Das Modell von Bohm und Aharanov 464
11.3.4	*Das EPR-Paradoxon in der Kopenhagener Deutung 465
11.4	*Verborgene Variablen 466
11.4.1	*Dispersion 466
11.4.2	*Die Bell'schen Ungleichungen 468
11.4.2.1	*Quantenmechanische Situation 468
11.4.2.2	*Verborgene Variablen 469
11.4.2.3	*Die Bell'sche Ungleichung 470
11.4.2.4	*Verletzung der Bell'schen Ungleichung 471
11.4.3	*Das GHZ-Experiment 472
11.5	*Der Messprozess 477
11.5.1	*Reiner und gemischter Zustand 477
11.5.2	*Zeitevolution des Dichteoperators 480
11.5.3	*Der Messprozess 481
11.5.3.1	*Gemeinsamer Zustand von Messobjekt und Messsystem 482
11.5.3.2	*Der von Neumann'sche Übergangsoperator 483
11.5.3.3	*Wigner'scher Messoperator 484

11.5.4	*Ubergang zum gemischten Zustand 485
11.5.5	*AND und OR 488
11.6	*Anwendungen der Theorie des Messprozesses 489
11.6.1	*Der Quanten-Zenon-Effekt 489
11.6.2	*Delayed-Choice-Experimente 492
11.6.3	*Wechselwirkungsfreie Messung 493
11.6.3.1	*Das Mach-Zehnder-Interferometer 493
11.6.3.2	*Prinzip der wechselwirkungsfreien Messung 494
11.6.3.3	*Zerstörungsfreie Materialprüfung nach Elitzur-Vaidman 495
11.6.4	*Quantencomputer 497
11.6.5	*Quanten-Teleportation 498
11.6.6	*Quantenkryptographie 501
	Aufgaben 504

Literaturverzeichnis 507

Sachverzeichnis 509