TABLE DES MATIÈRES.

CHAPITRE 1.

ANALYSE PRÉLIMINAIRE.

Généralités sur la question étudiée.

	•					
N**.		Pages.				
1.	1. Problème de stabilité au point de vue général. — Définition de la stabilité					
	Forme générale des équations différentielles étudiées du mouvement troublé Intégration au moyen de séries ordonnées suivant les puissances des constantes	212				
υ.	arbitraires	214				
4.	Étude de la convergence de ces séries dans le cas où l'on prend pour constantes	·				
5.	arbitraires les valeurs initiales des fonctions cherchées	217				
	stabilité	333				
	Sur certains systèmes d'équations différentielles linéaires.					
6.	Nombres caractéristiques des fonctions	223				
7.	Nombres caractéristiques des solutions des équations différentielles linéaires	229				
	Systèmes normaux de solutions	232				
9.	Systèmes réguliers et irréguliers d'équations	236				
10.	Systèmes réductibles d'équations	240				
	Sur un cas général d'équations différentielles du mouvement troublé.					
11.	Un nouveau type de séries ordonnées suivant les puissances des constantes arbi-					
	traires	2.43				
12.	Théorème sur la convergence de ces séries	246				
13.	Conséquences qui en découlent au point de vue de la stabilité	252				
	Quelques propositions générales.					

14. Remarques générales sur les fonctions définies par les équations différentielles du mouvement troublé......

255

172			
172			

A. LIAPOUNOFF

4/	Z A. LIAI OUNOIT.	
N°		Pages.
15.	Quelques définitions	256
16.	Propositions fondamentales	258
	CHAPITRE II.	
	ÉTUDE DES MOUVEMENTS PERMANENTS.	
	Des équations différentielles linéaires à coefficients constants.	
17.	Équation déterminante Types de solutions correspondant à ses racines simples	
	et multiples. — Groupes de solutions	267
18.	Transformation linéaire des équations différentielles en la plus simple forme	269
	Déterminants dérivés et équations obtenues en les égalant à zéro	273
2 0.	Des fonctions entières et homogènes, satisfaisant à certaines équations linéaires	
	aux dérivées partielles	276
21.	Des systèmes canoniques d'équations différentielles linéaires	278
	Étude des équations différentielles du mouvement troublé.	
22 .	Intégration au moyen de séries ordonnées suivant les puissances des constantes	
	arbitraires	284
	Théorème sur la convergence de ces séries, tiré du théorème du n° 12	287
	mière approximation	291
	Condition de l'instabilité de l'équilibre dans le cas où il existe une fonction de forces. Nouvelle démonstration des propositions du n° 24. — Théorème général sur l'insta-	294
27.	bilité	297
	ieures	299
	Premier cas. — Équation déterminante à une racine égale à zéro.	
2 8.	Réduction des équations différentielles à une forme convenable	301
	Étude du cas général	304
	Proposition auxiliaire	309
31.	Étude d'un cas d'exception	315
	Exposé de la méthode. — Exemples	318
]	Deuxième cas. — Équation déterminante à deux racines purement imaginair	es.
33.	Forme générale à laquelle se ramènent les équations différentielles	321
	Gertaines séries caractéristiques qui leur satisfont formellement. — Cas général où	
211	ces séries ne sont pas périodiques	325
აა.	Cas d'exception où elles sont périodiques. — Convergence de ces séries périodiques.	3 3o

	PROBLÈME GÉNÉRAL DE LA STABILITÉ DU MOUVEMENT.	473
N^*.		•
	Des solutions périodiques	Pages.
_	Étude du cas général	339
	Étude du cas d'exception. — Existence d'une intégrale holomorphe indépendante	339
	de t	342
30	Cas particuliers où l'on peut démontrer l'existence d'une solution périodique ou	J42
	d'une intégrale holomorphe	352
10	Quelques compléments. — Exposé de la méthode	
	Exemples	357 365
·#1.	Bacmptos	303
	Des solutions périodiques des équations différentielles du mouvement trouble	
42.	Démonstration de la convergence de certaines séries périodiques, satisfaisant for-	
	mellement aux équations différentielles	375
4 3.	Définition des solutions périodiques par les valeurs initiales des fonctions inconnues.	38o
44.	Cas de l'existence d'une intégrale holomorphe	383
4 3.	Des solutions périodiques des équations canoniques	385
	CHAPITRE III.	
	ÉTUDE DES MOUVEMENTS PÉRIODIQUES.	
	De l'antino di Ciambi Har lintaine à confficiente vivia linue	
	Des équations différentielles linéaires à coefficients périodiques.	
46 .	Équation caractéristique Types de solutions correspondant à ses racines simples	
	et multiples. — Groupes de solutions	392
47.	Transformation des équations à coefficients périodiques en des équations à coeffi-	
	cients constants	396
	Quelques propositions relatives à l'équation caractéristique.	
10	Théorème général sur le développement des invariants en séries suivant les puis-	
40.	•	_
10	sances de certains paramètres	399
	Application à une équation différentielle du second ordre	402
ου.	Conclusions sur la forme de l'équation caractéristique, qui découlent de certaines	
	propriétés fonctionnelles des coefficients des équations dissérentielles	
	De l'équation caractéristique du système canonique	
	Quelques procédés particuliers d'étude de l'équation caractéristique	
5 3.	Application de la théorie des fonctions d'une variable complexe. — Un cas où les	
	logarithmes des racines de l'équation caractéristique s'obtiennent algébriquement	:
	à l'aide de certaines intégrales définies	421
	Étude des équations différentielles du mouvement troublé.	
54.	Intégration à l'aide de séries ordonnées suivant les puissances des constantes arbi-	-
	traires	426

474	4 A. LIAPOUNOFF. — PROBLÈME GÉNÉRAL DE LA STABILITÉ DU MOUVEMENT	·
n". 55.		Pages. 429
	Premier cas. — Équation caractéristique à une racine égale à un.	
57. 58.	Réduction des équations différentielles à une forme convenable. Étude du cas général. Étude d'un cas d'exception. Exposition de la méthode. — Exemple.	430 433 436 437
De	EUXIÈME CAS. — Équation caractéristique à deux racines imaginaires de modu égaux à un.	ıles
60. 61.	Forme générale à laquelle se ramènent les équations différentielles	440
	ces séries ne sont pas périodiques	442
62 .	Étude de ce cas	446
63.	Exposition de la méthode. — Exemple	4.48
	second ordre	454
	Une généralisation.	
65.	Forme générale à laquelle se ramenaient les équations différentielles dans les cas singuliers considérés précédemment. — Existence d'intégrales holomorphes à coefficients limités. — Conclusions sur la stabilité	457