TABLE OF CONTENTS

	Page
CHAPTER I. BASIC DEFINITIONS AND PROPERTIES	1
1. Introduction	1
 Semidynamical Systems: Definitions and Conventions 	2
 A Glimpse of Things to Come; An Example from a Function Space 	5
4. Solutions	7
 Critical and Periodic Points Classification of Positive Orbits 	10 16
7. Discrete Semidynamical Systems	24
 Local Semidynamical Systems; Reparametrization Exercises 	25 31
10. Notes and Comments	33
CHAPTER II. INVARIANCE, LIMIT SETS, AND STABILITY	35
1. Introduction	35
 Invariance Limit Sets: The Generalized Invariance Principle 	36 39
4. Minimality	45
5. Prolongations and Stability of Compact Sets	52
6. Attraction: Asymptotic Stability of Compact Sets 7. Continuity of the Hull and Limit Set Maps in	56
Metric Spaces	62
8. Lyapunov Functions: The Invariance Principle	77
9. From Stability to Chaos: A Simple Example 10. Exercises	8 0 9 2
11. Notes and Comments	95
CHAPTER III. MOTIONS IN METRIC SPACE	98
1. Introduction	98
 Lyapunov Stable Motions Recurrent Motions 	99 105
4. Almost Periodic Motions	111
 Asymptotically Stable Motions 	121
6. Periodic Solutions of an Ordinary Differential	125
Equation 7. Exercises	131
8. Notes and Comments	133
CHAPTER IV. NONAUTONOMOUS ORDINARY DIFFERENTIAL	
EQUATIONS	137
 Introduction Construction of the Skew Product Semidynamical 	137
System	140
3. Compactness of the Space ${\mathscr F}$	151
 The Invariance Principle for Ordinary Differential Equations 	155
5 Limiting Equations and Stability	173

		Page
CHAPTE	R IV (cont.)	
6. 7.	Differential Equations without Uniqueness Volterra Integral Equations	189 192
8. 9.	Exercises Notes and Comments	202
CHAPTE	R V. SEMIDYNAMICAL SYSTEMS IN BANACH SPACE	209
1. 2.	Introduction Nonlinear Semigroups and Their Generators	209 212
3.	The Generalized Domain for Accretive Operators	225
4. 5.	Precompactness of Positive Orbits Solution of the Cauchy Problem	231 244
6.	Structure of Positive Limit Sets for Contraction Semigroups	
7.	Exercises	253 270
8.	Appendix: Proofs of Theorems 2.4 and 2.16	273
9.	Notes and Comments	279
CHAPTE	R VI. FUNCTIONAL DIFFERENTIAL EQUATIONS	283
1.	Why Hereditary Dependence, Some Examples from	
2.	Biology, Mechanics, and Electronics Definitions and Notation: Functional Differential	283
٠.	Equations with Finite or Infinite Delay.	
7	The Initial Function Space	285
3.	Existence of Solutions of Retarded Functional Equations	292
4.	Some Remarks on the Semidynamical System Defined	232
	by the Solution to an Autonomous Retarded	
	Functional Differential Equation: The Invariance Principle and Stability	707
5.	Some Examples of Stability of RFDE's	303 312
6.	Remarks on the Asymptotic Behavior of	312
	Nonautonomous Retarded Functional Differential	
7.	Equations Critical Points and Pariable Callet	326
7 •	Critical Points and Periodic Solutions of Autonomous Retarded Functional Differential	
8.	Equations	330
9.	Neutral Functional Differential Equations A Flip-Flop Circuit Characterized by a NFDE -	337
	The Stability of Solutions	351
10.	Exercises	360
11.	Notes and Comments	365
СНАРТЕ	R VII. STOCHASTIC DYNAMICAL SYSTEMS	369
1.	Introduction	369
2. 3.	The Space of Probability Measures Markov Transition Operators and the Semidynamical	370
٥.	System System	371
4.	Properties of Positive Limit Sets	374
5.	Critical Points for Markov Processes	378
6.	Stochastic Differential Equations	380
7. 8.	The Invariance Principle for Markov Processes Exercises	384
9.	Notes and Comments	389 392

Table of Contents

	Page
CHAPTER VIII. WEAK SEMIDYNAMICAL SYSTEMS AND PROCESSES	393
1. Introduction	393
	395
3. Compact Processes	400
4. Uniform Processes	410
5. Solutions of Nonautonomous Ordinary Differential	
Equations Revisited - A Compact Process	411
6. Solutions of a Wave Equation - A Uniform	
Process	412
7. Exercises	422
8. Notes and Comments	423
APPENDIX A	424
0. Preliminaries	424
1. Commonly Used Symbols	424
2. Nets	425
3. Uniform Topologies	427
4. Compactness	428
5. Linear Spaces	429
6. Duality	431
7. Hilbert Spaces	432
8. Vector Valued Integration	433
9. Sobolev Spaces	435
10. Convexity	436
11. Fixed Point Theorems	437
12 Almost Periodicity	438
12. Almost Periodicity 13. Differential Inequalities	438
	440
APPENDIX B	
1. Probability Spaces and Random Variables	440
2. Expectation	441
3. Convergence of Random Variables	443
4. Stochastic Processes; Martingales and	. , 0
Markov Processes	443
5. The Ito Stochastic Integral	446
5. The Ito Stochastic integral	440
REFERENCES	
INDEX OF TERMS	465
INDEY OF SYMBOLS	177