Contents

rre	race				•			•	•	•	•	
Acl	knowledgements											Х
	t of Symbols											XV
	•											
1.	Introduction					•						1
1.1	Differential inpu	ut-outpi	ut relation	ons a	nd sy	stems						4
	Compositions of											7
												13
1.4	Algebraic found Properties of di	fferenti	al input-	outp	ut re	lations						22
1.5	Feedback comp	ensation	n and co	ntro	l .							27
1.6	Concluding rem	arks								-	-	44
	concluding for	idino .	•	•	•	•	•	•	•	•	•	•
Par	t I Basic Concep	its of Sv	stems T	hear	v							
- 441	t I Dasie Concep	nts of Dy	Stellis 1		,							
2	Systems and sys	tam das	crintion	c								49
2.	Parametric inpu	t outpu	t mannir	ore /								7.7
2.1	tom description	լ-Ծաւթա	ı mappu	1gs. r	10511	act mp	ut-ou	iput	syste	1113. 3	y 3-	50
2 2	tem descriptions	5 . Dramami			•	•	•	•	•	•	•	52
2.2	Time systems. I	Jynamie	c system	15	•	•	•	•	•	•	•	
2.3	Linear systems		•	•	•	•	•	•	•	•	•	53
3.	Interconnections	of syst	tems									56
	Formal definition			nnec	tion o	of a fai	mily o	of sys	stems			56
3.2	Input-output re	lations	determi	ned l	by an	interd	conne	ction	ofa	ı fam	ily	
	of systems											61
3.3	Determinatenes	s with	respect	t to	the	empt	v set	of	real	izabil	itv	
	conditions											63
3.4	Determinatenes	s with	respec	t to	а :	enera	l set	of	real	izabil	itv	-
•••	conditions	5 771611	respec			5						64
3 5	Illustrative exam	nnle	•	•	•	•	•		•		•	67
0.5	mustrative exam	npic .	•	•	•	•	•	•	•	•	•	0,
Pai	rt II Differential	Systems	s. The M	1odu	le Str	ucture						
		2,200										
4	Generation of a	lifferent	ial system	ms								7:
41	Signal spaces as	nd diffe	rential c	nera	tors							7:
4.7	Matrix differen	tial equ	ations	,,,,,,,		•	•	•	•	-		7
7.2	Matrix differen	nai equ	anons	•	•	•	•	•	•	•	•	,

Contents

5. The $\mathbb{C}[p]$ -module \mathscr{X}			. 80
5.1 Suitable signal spaces %	٠		. 81
5.2 The ring $C[p]$ of polynomial operators. The $C[p]$	-module	æ .	. 84
5.3 Relationship between polynomial matrix operator $C[p]$.	s and m	atrices c	
$\mathcal{L}[P]$	ratore		. 85
	iatois		
6. Differential input-output relations. Generators .			. 88
6.1 Introduction. Regular differential input-output re	elations a	and regi	
generators			. 89
input-output equivalence. Complete invariants and	canonic	ai iorms	or 91
6.3 The transfer matrix. Proper and strictly proper tra	nsfer ma	.trices c	
erators, and differential input-output relations.	mater me	urices, g	. 94
6.4 Transfer equivalence. Complete invariants and	canonica	l forms	
transfer equivalence. Controllability			. 95
6.5 Proofs of theorems (6.2.1), (6.2.2) and (6.4.8).			. 100
6.6 Comments on canonical forms. Canonical row pro	oper forr	ns .	. 104
7. Analysis and synthesis problems			. 106
7.1 An elimination procedure	٠		. 107
7.2 Compositions and decompositions of regular diffe	rential in	nput-out	put
relations. Observability	•		. 110
7.3 A parallel composition			. 123
7.4 Parallel decompositions of regular differential in7.5 Illustrative example	put-outp	ut relati	
7.6 A series composition	•		. 133
7.7 Series and series-parallel decompositions of	regular	differen	
input-output relations			. 143
7.8 The Rosenbrock representation			. 145
7.9 The state-space representation			. 158
7.10 The Rosenbrock representation and the state-spa			
decompositions of regular differential input-outp	ut relation	ons. Eq	
alence relations	•		. 160
7.11 Goserver synthesis problem	•		. 176 . 184
7.12 recuback compensator synthesis	•		. 104
Part III Differential Systems. The Vector Space Struct	ure		
9 The maintain math od			. 203
8. The projection method8.1 Reason for choosing a space of generalized function	ons as si	 onal sna	
8.2 The basic signal space \mathfrak{D} of generalized functions. P	rojection	mannii	19S.
Subspaces of D. Generalized causality			. 205
8.3 The vector space \mathscr{X} over $\mathbf{C}(p)$. 210
8.4 Compositions of projections and differential operate	ors. Initi	al condi	ion
mappings			. 216
8.5 The projection method			. 226
9. Interconnections of differential systems	_		. 243
9.1 Two interconnections			243
9.2 Systems associated with compositions of input-out	put rela	tions .	. 250

							Co	ntents
9.3 The main results 9.4 Illustrative example			•					253 259
Part IV Difference Systems								
10. Generation of difference systems								273
10.1 Signal spaces and shift operators 10.2 Matrix difference equations .			•					273 274
11. The module structure								276 276 278
11.3 Polynomial and rational matrix of matrices	perato	rs and	l poly	nomi	al and	l ratic		279
12. Difference input-output relations.12.1 Regular difference input-output in 12.2 Input-output equivalence. Canon	relatio nical f	ns an orms	d reg for i	nput-	outpu	it equ	.iv-	281 282
alence. Causality	and ca	usalit ns fo	y . or tra	insiei	equ	iivaiei	nce	283 284 285
13. Analysis and synthesis problems13.1 Compositions and decomposition relations. Observability13.2 The feedback composition	is of re	gular	diffe	rence	e inpu	it-out		288 288 291
 14. The vector space structure. The p 14.1 Signal space	of quot d delay	tients y ope	rator	s. Ini	tial c	ondit	ion	293 293 295 296
mappings			•					298
Appendices								
A1 Fundamentals of abstract algebra								303
A2 Polynomials and polynomial matri	ices							321
A3 Polynomials and rational forms in	an en	domo	rphis	m				340
A4 The space 20 of generalized function	ons						•	342
T 1								349 353