CONTENTS

Preface Dynamics Hall of Fame	ix 1
1. Basic Concepts of Dynamics	11
1.1 State spaces	13
1.2 Dynamical systems	19
1.3 Special trajectories	29
1.4 Asymptotic approach to limit sets	35
1.5 Attractors, basins and separatrices1.6 Gradient systems	41 47
2. Classical Applications: Limit points in 2D from Newton to Rayleigh	53
2.1 Pendula	55
2.2 Buckling columns	65
2.3 Percussion instruments	7 1
2.4 Predators and prey	83
3. Vibrations: Limit cycles in 2D from Rayleigh to Rashevsky	87
3.1 Wind instruments	89
3.2 Bowed instruments	95
3.3 Radio transmitters	105
3.4 Biological morphogenesis	109
4. Forced Vibrations: Limit cycles in 3D from Rayleigh to Duffing	115
4.1 The ring model for forced springs	117
4.2 Forced linear springs	129
4.3 Forced hard springs	143
4.4 Harmonics	153
5. Compound Oscillations: Invariant tori in 3D from Huyghens to Hayashi	163
5.1 The torus model for two oscillators	165
5.2 The torus model for coupled oscillators	171
5.3 The ring model for forced oscillators	177
5.4 Braids: the dynamics of entrainment	181
5.5 Response curves for frequency changes	191
5.6 Forced electrical oscillators	199

207

Conclusion

CONTENTS

Appendix: analytical expressions A. Basic concepts B. Exemplary systems	209 209 210
Notes	215

217

219

Bibliography

Index