CONTENTS

INTRODUCTION	J
CHAPTER I, Preliminaries.	
0. Introduction	4
1. Hamiltonian systems	ц
2. Symmetry, integrability and reduction	9
3. Linear Hamiltonian systems	14
CHAPTER II, Normal forms for Hamiltonian functions.	
0. Introduction	19
1. Normalization with respect to the semisimple part of ${ m H}_2$	2.2
2. Further normalization	2 9
3. Examples of normal form computations	
3.1 Basic computation	33
3.2 Nonresonant case	34
3.3 Resonant case in two degrees of freedom	35
3.4 Resonant case in n degrees of freedom	3 8
3.5 The nonsemisimple 1:-1 resonance	39
4. Integrals and energy-momentum maps	41
5. Historical notes	42
CHAPTER III, Fibration preserving normal forms for energy-momen	tum
maps.	
0. Introduction	46
1. Preliminaries from the theory of stability of maps	47
2. Standard forms for energy-momentum maps and invariant sets	5 3
3. Computation of a standard function for the nonsemisimple	
1:-1 resonance	5 6
4. Discussion	64
CHAPTER IV, The Hamiltonian Hopf bifurcation.	
0. Introduction	66
1. Symmetry and reduction	67
2. The fibres of $G_{v} \times S$	70
3. Relative equilibria	77
4. The $G_{v}(x,y)$ level sets	80
CHAPTER V, Nonintegrable systems at resonance.	
0. Introduction	84
1. Normal form and deformation	8 5
2. The Moser-Weinstein reduction	86
 Differentiability of E(x,y,v) 	90

4. Invariant tori, homoclinic orbits.	93
CHAPTER VI, The restricted problem of three bodies	
0. Introduction	95
1. The equations of motion of the restricted three body problem	95
2. History of the problem	98
REFERENCES	104
INDEX	113