CONTENTS

An ABC of modelling xix The Deterministic View			xix
1	Grow	th and decay. Dynamical systems	3
	1.1	Decay of pollution. Lake purification	5
	1.2	Radioactive decay	
	1.3	Plant growth	7 7
	1.4	A simple ecosystem	8
	1.5	A second simple ecosystem	11
	1.6	Economic growth	13
	1.7	Metered growth (or decay) models	21
	1.8	Salmon dynamics	23
	1.9		26
	1.10	Chemical dynamics	29
		More chemical dynamics	30
		Rowing dynamics	32
	1.13	Traffic dynamics	34
	1.14	Dimensionality, scaling, and units	35
		Exercises	40
2	Equil	ibrium	46
	2.1	The equilibrium concentration of contaminant in	
		a lake	52
		Rowing in equilibrium	53
	2.3	How fast do cars drive through a tunnel?	57
	2.4	Salmon equilibrium and limit cycles	58

	2.	5 How much heat loss can double-glazing prevent?	63
	2.		66
		7 Equilibrium shifts	71
	2.	~	
		equilibrium?	76
		Exercises	83
	3 Op	timal control and utility	91
	3.	1 How fast should a bird fly when migrating?	93
	3.	2 How big a pay increase should a professor	
		receive?	95
	3.	3 How many workers should industry employ?	103
		4 When should a forest be cut?	104
	3.	5 How dense should traffic be in a tunnel?	109
	3.	6 How much pesticide should a crop grower	
		use—and when?	111
	3.	7 How many boats in a fishing fleet should be	
		operational?	115
		Exercises	119
H	Validati	ng a Model	
	4 Va	lidation: accept, improve, or reject	127
	4	.1 A model of U.S. population growth	127
		.2 Cleaning Lake Ontario	128
		.3 Plant growth	129
		.4 The speed of a boat	130
		.5 The extent of bird migration	132
		.6 The speed of cars in a tunnel	136
		.7 The stability of cars in a tunnel	138
		.8 The forest rotation time	142
		.9 Crop spraying	146
	4.		148
	4.	. • .	151
		12 Predator-prey oscillations	154 157
		13 Sockeye swings, paradigms, and complexity	
		Optimal fleet size and higher paradigms	159
	4.	15 On the advantages of flexibility in prescriptive	161
		models Exercises	163

III The Probabilistic View

5	Birth	and death. Probabilistic dynamics	1/5
	5.1	When will an old man die? The exponential	
		distribution '	180
	5.2	When will N men die? A pure death process	183
	5.3	Forming a queue. A pure birth process	185
	5.4	How busy must a road be to require a pedestrian	
		crossing control?	187
	5.5	The rise and fall of the company executive	189
	5.6	Discrete models of a day in the life of an elevator	193
	5.7	•	198
	5.8	Trees in a forest. An absorbing birth and death	
		chain	200
		Exercises	202
6	Statio	onary distributions	208
	6.1	The certainty of death	210
	6.2	Elevator stationarity. The stationary birth and	
		death process	213
	6.3	How long is the queue at the checkout? A first	
		look	215
	6.4	How long is the queue at the checkout? A second	
		look	217
	6.5	How long must someone wait at the checkout?	
		Another view	219
	6.6	The structure of the work force	225
	6.7		227
		Exercises	234
7	Optio	nal decision and reward	237
	7.1	How much should a buyer buy? A first look	237
	7.2	How many roses for Valentine's Day?	243
	7.3	How much should a buyer buy? A second look	245
	7.4	How much should a retailer spend on	
		advertising?	247
	7.5	How much should a buyer buy? A third look	253
	7.6	Why don't fast-food restaurants guarantee service	
		times any more?	258
	7.7	When should one barber employ another?	
	_	Comparing alternatives	263
	7.8	On the subjectiveness of decision making	267
		Exercises	268

xvi

IV The Art of Application

8	Using	a model: choice and estimation	275
	8.1 8.2	Protecting the cargo boat. A message in a bottle Oil extraction. Choosing an optimal harvesting	276
		model	279
	8.3	Models within models. Choosing a behavioral	201
	0.4	response function	281
	8.4	Estimating parameters for fitted curves: an error control problem	285
	8.5	Assigning probabilities: a brief overview	291
	8.6	-	293
	8.7		2,5
	0.,	their parameters	304
	8.8	Choosing a utility function. Cautious attitudes to	•
		risk	316
		Exercises	322
9	Build	ing a model: adapting, extending, and combining	327
	9.1	How many papers should a news vendor buy? An	
		adaptation	328
	9.2	Which trees in a forest should be felled? A	
		combination	329
	9.3	Cleaning Lake Ontario. An adaptation	334
	9.4		337
	9.5	Pure diffusion of pollutants. A combination	345
	9.6	Modelling a population's age structure. A first	
		attempt	350
	9.7	Modelling a population's age structure. A second	- 60
		attempt	360
		Exercises	373
Tov	vard M	ore Advanced Models	
10	Furth	ner dynamical systems	383
	10.1	How does a fetus get glucose from its mother?	383
	10.2		389
	10.3	Does increasing the money supply raise or lower	
		interest rates?	393
	10.4	Linearizing time: The semi-Markov process. An	
		extension	398
	10.5	A more general semi-Markov process. A further	
		extension	406

		Contents	XVII
	10.6	Who will govern Britain in the twenty-first	
		century? A combination	409
		Exercises	412
11	Furth	er flow and diffusion	416
	11.1	Unsteady heat conduction. An adaptation	417
	11.2		
		by? A first look	421
	11.3		
		by? A second look	423
	11.4		429
	11.5		433
		Flow and diffusion in a tube: a generic model	436
		River cleaning. The Streeter-Phelps model	440
	11.8	• • • • • • • • • • • • • • • • • • • •	
		lower than an open one?	446
		Exercises	454
12	Furth	ner optimization	458
	12.1	Forman Policy C,	
		programming	458
	12.2		
		problem	465
		A faculty hiring model	470
	12.4		
		parking space	475
	12.5	• • •	479
	12.6	, , , , , , , , , , , , , , , , , , , ,	496
		Exercises	507
	Epilo	gue	514
	Appe	ndix 1: A review of probability and statistics	516
	Appe	ndix 2: Models, sources, and further reading	
	arran	ged by discipline	531
	Soluti	ions to selected exercises	539
	Refer	ences	583
	Index	· •	591