Contents ____ Preface | Chapter | 1 | Introduction | 1 | |---------|---|--|----| | Chapter | 2 | Writing Differential Equations | 4 | | | | 2-1 Introduction 4 | | | | | 2-2 Mechanical Systems 4 | | | | | 2-3 Hydraulic Systems 18 | | | | | 2-4 Electric Systems 21 | | | | | 2-5 A Thermal System 25 | | | | | 2-6 An Ecological System 26 | | | | | 2-7 A Political-Military System 29 | | | | | 2-8 Conclusion 30 | | | | | Problems 30 | | | Chapter | 3 | Solving Differential Equations | 40 | | | | 3-1 Introduction 40 | | | | | 3-2 Solution of Homogeneous | | | | | Equations 43 | | | | | 3-3 Consideration of Initial Conditions 47 | | | | | 3-4 Solution of Nonhomogeneous | | | | | Equations 49 | | | | | -1 | • | vi CONTENTS | | 3-5 Transient and Steady-State Responses 52 3-6 Combining Simultaneous Equations 53 3-7 Conclusion 53 Problems 54 | | |------------------|--|-----------| | Chapter 4 | Linear Equations for Modeling Nonlinear Systems | <i>57</i> | | | 4-1 Introduction 57 4-2 Examples of Nonlinearities 58 4-3 Principles of Linearization 62 4-4 Conclusion 73 Problems 73 | | | Chapter 5 | Introduction to Vibrations | 80 | | | 5-1 Introduction 80 5-2 Basic Principles and Definitions 82 5-3 Units 88 5-4 Conclusion 90 Problems 90 | | | Chapter 6 | Free Vibration: Systems with a Single Degree of Freedom | 96 | | | 6-1 Introduction 96 6-2 Undamped Free Vibration 97 6-3 Damped Free Vibration 104 6-4 Determination of Damping Ratio from Experimental Data 110 6-5 Conclusion 112 Problems 113 | | | Chapter 7 | Forced Vibration: Systems with a Single
Degree of Freedom | 121 | | | 7-1 Introduction 121 7-2 Examples of Mechanical Vibrating Systems with Sinusoidal Inputs 122 | | | | 7-3 Frequency Response 125 | | CONTENTS vii | | 7-4 Vibration Caused by Rotating Unbalance 137 7-5 Displacement Input Acting Through a Dashpot and Spring in Parallel 141 7-6 Transmissibility 146 7-7 Systems with Simultaneous Inputs at Two or More Frequencies 149 7-8 Conclusion 153 Problems 156 | , | |-------------------|--|-----| | Chapter 8 | More Complex Single-Degree-of-Freedom Systems | 166 | | | 8-1 Introduction 166 | | | | 8-2 Determining the Degrees of Freedom of a Mechanical System 166 | | | | 8-3 Method of Analysis 169 | | | | 8-4 Equivalent Inertia, Damping, and Spring Rate 176 | | | | 8-5 Conclusion 178 Problems 179 | | | Chapter 9 | Vibrating Systems with More Than One
Degree of Freedom | 186 | | | 9-1 Introduction 186 | | | | 9-2 Writing the Equations of Motion 186 | | | | 9-3 Two-Mass System Without Damping 191 | | | | 9-4 Two-Mass System with Damping 198 | | | | 9-5 Vibrating Systems with More Than
Two Degrees of Freedom 202 | | | | 9-6 Conclusion 202 Problems 203 | | | | | | | a . 10 | Die il de l'Oueres ches Crestame | 200 | | Chapter 10 | Distributed Parameter Systems | 209 | | Chapter 10 | 10-1 Introduction 209 | 209 | | Chapter 10 | 10-1 Introduction 209 10-2 Rigorous Analysis of a Distributed | 209 | | Chapter 10 | 10-1 Introduction 209 10-2 Rigorous Analysis of a Distributed | 209 | viii CONTENTS | | 10-4 Conclusion 219
Problems 219 | | |------------|--|-----| | Chapter 11 | Critical Speeds of Rotors | 221 | | | 11-1 Introduction 221 11-2 Analysis of a Simple Lumped Parameter Rotor 222 | | | | 11-3 Effect of Compliance in Bearings and Bearing Mounts 226 | | | | 11-4 Other Critical Speed | | | | Considerations 229 11-5 Similar Rotor Instability | | | | Phenomena 234 11-6 Conclusion 235 Problems 236 | | | Chapter 12 | Balance of Rotors | 242 | | | 12-1 Introduction 242 12-2 Static Balance 243 12-3 Dynamic Balance 245 12-4 Conclusion 251 Problems 252 | | | Chapter 13 | The Feedback Control System | 256 | | | 13-1 Introduction 256 | | | | 13-2 Home Heating Application 257 | | | | 13-3 Feedback Control Systems 258 | | | | 13-4 Conclusion 259 | | | Chapter 14 | System Response and Stability | 261 | | | 14-1 Introduction 26114-2 Response of a Liquid-LevelSystem 262 | | | | 14-3 First-Order System Response to a Step Input 264 | | | | 14-4 First-Order System Response to a Sinusoidal Input 266 | | CONTENTS ix | | 14-5 Second-Order System Response 270 14-6 Response of Higher-Order Systems to Simple Sinusoidal Inputs 274 14-7 The Concept of System Stability 275 14-8 Conclusion 277 Problems 277 | | |------------|--|-----| | Chapter 15 | Control Actions | 284 | | | 15-1 Introduction 284 15-2 Proportional Control 285 15-3 Integral Control 288 15-4 Proportional-plus-Integral | | | Chapter 16 | Block Diagrams | 303 | | | 16-1 Introduction 303 16-2 The Transfer Function 304 16-3 The Block Diagram 307 16-4 Block Diagram Algebra 308 16-5 Liquid-Level Integral Control System Example 314 16-6 Systems with Two or More Inputs 318 16-7 Feedback Compensation 321 16-8 Conclusion 323 | | | Chapter 17 | State-Variable Formulation and Computer Solutions 17-1 Introduction 327 17-2 State-Variable Formulation 328 17-3 State-Space Trajectories 334 17-4 Analog Computer Solutions 336 17-5 Digital Computer Solutions 339 17-6 Conclusion 344 Problems 344 | 327 | CONTENTS | Chapter 18 | Experimental Determination of System Dynamic Characteristics | 348 | |-------------------|--|-----| | | 18-1 Introduction 34818-2 Test Equipment and Instrumentation 350 | | | | 18-3 Applying System Inputs 359 18-4 Recording and Interpreting System Response 362 | | | | 18-5 Conclusion 371 Problems 372 | | | Appendix A | Deflection of Beams | 376 | | Appendix B | Alternative Mathematical Expressions for
Certain Harmonic Functions | 380 | | Appendix C | Solution of Equations | 383 | | Appendix D | Steady-State Solutions by Rotating-Vector and Complex-Number Techniques | 386 | | Appendix E | Rayleigh's Energy Method | 394 | | Appendix F | Decibel Conversion Table | 397 | | Appendix G | Routh's Criterion | 398 | | Bibliography | | 401 | | Index | | 403 |