CONTENTS

Int	Introduction		
1	Functions of bounded variation	7	
1.1	Measure theory. Basic notation	7	
	1.1.1 Supremum of a family of measures	9	
1.2	Construction of measures. Hausdorff measures	10	
	1.2.1 Carathéodory's construction	10	
	1.2.2 Hausdorff measures	11	
	1.2.3 The De Giorgi and Letta measure criterion	11	
1.3	Weak convergence of measures	12	
	1.3.1 Weak convergence of measures as set functions	13	
	1.3.2 Reshetnyak's Theorem	14	
1.4	BV functions	14	
	1.4.1 BV functions of one variable	16	
1.5	Sets of finite perimeter	16	
1.6	Structure of the sets of finite perimeter	18	
1.7	Approximate continuity	19	
1.8	Structure of BV functions	20	
	1.8.1 1-dimensional sections of BV functions	21	
	1.8.2 The chain rule formula	22	
1.9	Exercises	23	
2	Special functions of bounded variation	27 27	
2.1			
2.2	General lower semicontinuity conditions in one dimension	29	
	2.2.1 Exercises	34	
2.3	A lower semicontinuity theorem in higher dimensions	35	
2.4	The Mumford-Shah functional	36	
	2.4.1 GSBV functions	36	
	2.4.2 The Mumford-Shah functional	38	
3	Examples of approximation		
3.1	Γ-convergence: an overview	39	
3.2	Elliptic approximations	45	
	3.2.1 Approximation of the perimeter by elliptic functionals	4	
	3.2.2 Exercises	40	
	3.2.3 Approximation of the Mumford-Shah functional by ellip-		
	tic functionals	4'	
	3.2.4 Approximation of free-discontinuity problems by elliptic		
	functionals	5	

X Contents

3.3	Approximations by high-order perturbations		
	3.3.1 Surface energies generated by high-order singular pertu-	56 r-	
	bation	56	
	3.3.2 Exercises	63	
	3.3.3 Approximation of the Mumford-Shah functional by high	1-	
	order perturbations	64	
	3.3.4 Exercises	67	
3.4	* 1	67	
	3.4.1 Non-local approximation of the Mumford-Shah functions	al 67	
	3.4.2 Exercises	71	
	3.4.3 Non-local approximation of free-discontinuity problems	72	
	3.4.4 Exercises	77	
3.5	Finite-difference approximation of free-discontinuity problems	78	
	3.5.1 Exercises	85	
4	A general approach to approximation	87	
4.1	A lower inequality by slicing	87	
	4.1.1 The slicing method	88	
	4.1.2 A lower estimate for the perimeter approximation	89	
	4.1.3 A lower estimate for the elliptic approximation	92	
	4.1.4 A lower estimate for the approximation by high-order per	<u>-</u>	
	turbations	94	
4.2	An upper inequality by density	96	
	4.2.1 An upper estimate for the perimeter approximation	97	
	4.2.2 A density result in SBV	99	
	4.2.3 An upper estimate for the elliptic approximation	100	
4.3	3 Convergence results		
5	Non-local approximation		
5.1	Non-local approximation of the Mumford-Shah functional	103	
	5.1.1 Estimate from below of the volume term	103	
	5.1.2 Estimate from below of the surface term	108	
	5.1.3 Estimate from below of the Γ -limit	114	
	5.1.4 Estimate from above of the Γ-limit	118	
	5.1.5 Some convergence results	119	
5.2	Finite-difference approximation of the Mumford-Shah functiona	l 124	
	5.2.1 Compactness	127	
	5.2.2 Convergence results	129	
	5.2.3 Exercises	130	
A pp	oendix	131	
4	Some numerical results	131	
3	Approximation of polyhedral energies		
7	An integral representation result		
)	Gap phenomenon in GSBV		

	Contents	XI
Notation		143
References		145
Index		149