$\underline{Contents}$

l.	Basic	Considerations	J
	I.1.	Task description	1
	I.2.	Information processing and memorization in neuronal networks	
		(microintelligene)	3
	I.3.	Human problem solving strategies with respect to actions (macrointelligence)	6
	I.4.	The learning control loop due to E. Ersü	9
	I.5.	Comparison of adaptive and learning control	13
	I.6.	Short review of related work	17
		I.6.1. Calculation versus memorization	18
		I.6.2. Neural network models and related theories	19
		I.6.3. Concepts for imitation of human process control abilities	22
	I.7.	Recapitulation	25
	I.8.	Literature	25
Π.		pintelligence	29
	II.1.	The cerebellar model of J. S. Albus	29
		II.1.1. Neurophysiological background	29
		II.1.2. Translation of the neurophysiological findings into a model	
		implementable on a computer	31
	II.2.	AMS - a computer oriented effective implementation of the	
		cerebellar model of J. S. Albus	38
		II.2.1. Introductory remarks	38
		II.2.2. The first mapping: Numerical input value characterization	39
		II.2.3. The second mapping: From matrices to memory locations	45
		II.2.4. The third mapping: Construction of the memory responses/outputs	48
		II.2.5. Performance	53
	II.3.	Results with some test functions	56
		II.3.1. Test functions and quality assessment criteria	56
		II.3.2. Effects of various parameter variations	59
		II.3.3. Noise filtering	65
	II.4.	Theoretical considerations	66
		II.4.1. Basic properties	66
		II.4.2. Storage capacities	68
		II.4.3. Convergence	70

II.5.	Variable generalization	75
	II.5.1. Principal considerations	75
	II.5.2. Concept of variable generalization using the AMS	76
	II.5.3. Mathematical alternative MIAS	78
	II.5.4. Comparison between AMS and MIAS	82
II.6.	Direct application areas	85
II.7.	Comparison with "neural nets" and "polynominal approximation"	88
II.8.	Recapitulation	91
II.9.	Literature	92
III. Mac	rointelligenœ	95
III.1	. Learning control loop with an explicit process model - LERNAS	95
	III.1.1. Assumptions and definitions	95
	III.1.2. Functional description	96
	III.1.2.1. Sampling of process quantities and adaption	
	of the predictive process model	97
	III.1.2.2. Selection of an advantageous plant input	
	by optimization	98
	III.1.2.3. Adaption of the associative memory used in	
	the controller and computation of the process	
	inputs to be applied	100
	III.1.2.4. ν steps look ahead capability	101
	III.1.3. Optimization	101
	III.1.4. Test processes	106
	III.1.5. Results and experiences	109
	III.1.5.1. LERNAS' handling of the test processes	109
	III.1.5.2. Performance criterion variations	119
	III.1.5.3. Influence of optimization procedure variations	123
	III.1.5.4. Optimization improvement limits	128
	III.1.6. Robustness with respect to selectable parameters	131
	III.1.6.1. Method of assessment	131
	III.1.6.2. Results	133
	III.1.7. Experiments with variable generalization	139
	III.1.8. Supplementary remarks	150
	III.1.8.1. Closed loop stability	150
	III.1.8.2. Backlash, friction, dead-time and non-minimum	
	phase plants	152

III.2. Hierarchies and alternative structures	152
III.2.1. Structures for and preliminary experiences with	
LERNAS hierarchies	152
III.2.2. Changes and alternatives to LERNAS	162
III.2.2.1. Prestructuring of the locally generalizing memories	162
III.2.2.2. Results with a prestructured controller	166
III.2.2.3. Simplifications	172
III.2.2.4. Results achieved with MINLERNAS	174
III.2.2.5. Results achieved with Miller's learning control loop	177
III.3. Real-time application of learning control loops to pilot plants	183
III.3.1. Modifications for real-time, on-line control	183
III.3.2. Control of a binary distillation column pilot plant with LERNAS	180
III.3.3. Control of an air conditioning system with Miller's approach	189
III.4. Recapitulation	199
III.5. Literature	199
Conclusion and remarks on further research topics	202
Index	20-