CONTENTS

Chapter 1 INTRODUCTION

1.1.		Extremal Problems Appear?	1
		The Classical Isoperimetric Problem. Dido's Problem.	1
	1.1.2.	Some Other Ancient Extremal Problems in Geometry	5
		Fermat's Variational Principle and Huygens'	
		Principle. The Light Refraction Problem	7
	1.1.4.	The Brachistochrone Problem. The Origin of the	
		Calculus of Variations	9
	1.1.5.	Newton's Aerodynamic Problem	11
		The Diet Problem and the Transportation Problem	12
		The Time-Optimal Problem	13
	1.1./.	The Time-Optimal Froblem	13
1.2.	How Are	e Extremal Problems Formalized?	13
	1.2.1.	Basic Definitions	13
		The Simplest Examples of Formalization of Extremal	
		Problems	14
	1.2.3.	The Formalization of Newton's Problem	15
		Various Formalizations of the Classical	1.5
	1.2.4.	Isoperimetric Problem and the Brachistochrone	
		Problem. The Simplest Time-Optimal Problem	17
	1 2 5		1/
	1.2.3.	Formalization of the Transportation and the Diet	
		Problems	19
	1.2.6.	The Basic Classes of Extremal Problems	19
1.3.	Lagrans	ge Multiplier Rule and the Kuhn-Tucker Theorem	23
		The Theorem of Fermat	23
		The Lagrange Multiplier Rule	24
		The Kuhn-Tucker Theorem	28
		Proof of the Finite-Dimensional Separation	20
	1.3.4.	Theorem	31
		meorem	31
1.4.	Simples	st Problem of the Classical Calculus of Variations	
	and Its	s Generalizations	32
	1.4.1.	Euler Equation	32
		Necessary Conditions in the Bolza Problem.	
	- · · · · · ·	Transversality Conditions	36
	1 / 3	The Extension of the Simplest Problem	37

105

	1.4.4. 1.4.5.	Needlelike Variations. Weierstrass' Condition Isoperimetric Problem and the Problem with	43
		Higher Derivatives	45
1.5.	Lagran	ge Problem and the Basic Optimal Control Problem	47
	1.5.1.	Statements of the Problems	47
	1.5.2.	Necessary Conditions in the Lagrange Problem	48
	1.5.3.	The Pontryagin Maximum Principle	50
	1.5.4.	Proof of the Maximum Principle for the Problem	
		with a Free End Point	51
			51
1.6.	Soluti	ons of the Problems	56
	1.0.1.	Geometrical Extremal Problems	57
	1.0.2.	Newton's Aerodynamic Problem	60
	1.6.3.	The Simplest Time-Optimal Problem	63
	1.6.4.	The Classical Isoperimetric Problem and the	
		Chaplygin Problem	66
	1.6.5.	The Brachistochrone Problem and Some Geometrical	
		Problems	69
	M.	Chapter 2 ATHEMATICAL METHODS OF THE THEORY OF EXTREMAL PROBLEMS	
2.1.	Backgr	ound Material of Functional Analysis	71
	2.1.1.	Normed Linear Spaces and Banach Spaces	71
	2.1.2.	Product Space. Factor Space	72
	2.1.3.	Hahn-Banach Theorem and Its Corollaries	74
	2.1.4.	Separation Theorems	77
	2.1.5.	Inverse Operator Theorem of Banach and the	,,
		Lemma on the Right Inverse Mapping	79
	2.1.6.	Lemma on the Closed Image.	80
	2.1.7.	Lemma on the Annihilator of the Kernel of a	80
		Regular Operator	0.1
	2.1.8.	Absolutely Continuous Functions.	81
	2.1.9.	Riesz' Representation Theorem for the General	81
	2.1.7.	Linear Functional on the G. R	
		Linear Functional on the Space C. Dirichlet's Formula	0.7
		Totalda	84
2.2.	Fundame	entals of Differential Calculus in Normed Linear	
	Spaces.	· · · · · · · · · · · · · · · · · · ·	85
	2.2.1.	Directional Derivative, First Variation, the	
		Fréchet and the Gateaux Derivatives, Strict	
		Differentiability,	85
	2.2.2.	Theorem on the Composition of Differentiable	05
		Mappings	90
	2.2.3.	Mean Value Theorem and Its Corollaries	
	2.2.4.	Differentiation in a Product Space. Partial	92
		Derivatives. The Theorem on the Total Differ-	
		ential	0.4
	2 2 5	ential	94
	4.4.3.	Higher-Order Derivatives. Taylor's Formula	97
2.3.	Implici	it Function Theorem	101
	2.3.1.	Statement of the Existence Theorem for an	101
	-	Implicit Function	101
	2.3.2.	Modified Contraction Mapping Principle	101
	2.3.3	Proof of the Theorem	102
	2.3.4	The Classical Implicit Function and Inverse	103
		Mapping Theorems	105
			105

CONTENTS	хi

	2.3.5. Tangent Space and Lyusternik's Theorem	108
2.4.	Differentiability of Certain Concrete Mappings	111
	Operator	111
	2.4.2. Integral Functional	113
	2.4.3. Operator of Boundary Conditions	115
2 5	Necessary Facts of the Theory of Ordinary Differential	
2.5.	Equations	116
	2.5.1. Basic Assumptions	117
	2.5.2. Local Existence Theorem	118
	2.5.3. Uniqueness Theorem	120
		121
	2.5.4. Linear Differential Equations	124
	2.5.6. Theorem on the Differentiability of Solutions	124
	with Respect to the Initial Data	128
	2.5.7. Classical Theorem on the Differentiability of	120
		130
	Solutions with Respect to the Initial Data	130
2.6	Elements of Convex Analysis	133
2.0.	2.6.1. Basic Definitions	133
	2.6.2. Convex Sets and Functions in Topological Linear	133
	Spaces	138
	2.6.3. Legendre-Young-Fenchel Transform. The	130
	Fenchel-Moreau Theorem	144
	2.6.4. Subdifferential. Moreau—Rockafellar Theorem.	144
	Dubovitskii-Milyutin Theorem	147
	Dubovitskii-Hilyutin meorem	147
	Chapter 3 THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS	
	Chapter 3 THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS	
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS	154
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 154
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158
3.1.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160
	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160 163 163
3.2.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160 163 163 164 165
3.2.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160 163 163 164 165 166
3.2.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160 163 163 164 165 166
3.2.	Elementary Problems	154 157 158 160 160 163 163 164 165 166
3.2.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160 163 163 164 165 166
3.2.	THE LAGRANGE PRINCIPLE FOR SMOOTH PROBLEMS WITH CONSTRAINTS Elementary Problems	154 157 158 160 160 163 163 164 165 166
3.2.	Elementary Problems	154 157 158 160 160 163 163 164 165 166
3.2.	Elementary Problems	154 157 158 160 160 163 163 164 165 166 169 170
3.2.	Elementary Problems	154 157 158 160 160 163 163 164 165 166

3.4.	Second-Order Necessary Conditions and Sufficient Conditions	
	for Extremum in Smooth Problems	186
	3.4.1. Smooth Problems with Equality Constraints	186
	3.4.2. Second-Order Necessary Conditions for Smooth Prob-	100
	lems with Equality and Inequality Constraints	188
	3.4.3. Sufficient Conditions for an Extremum for Smooth	
	Problems with Equality and Inequality Constraints	190
3.5.	Application of the Theory to Algebra and Mathematical	
	Analysis	193
	3.5.1. Fundamental Theorem of Algebra	193
	3.5.2. Sylvester's Theorem	194
	3.5.3. Distance from a Point to a Subspace. Theorem	
	on the Orthogonal Complement. Gram Determinants	195
	3.5.4. Reduction of a Quadratic Form to Its Principal	175
	Axes	197
	3.5.5. Legendre Quadratic Forms	201
		201
	Chapter 4	
	THE LAGRANGE PRINCIPLE FOR PROBLEMS OF THE CLASSICAL CALCULUS	
	OF VARIATIONS AND OPTIMAL CONTROL THEORY	
	The strain outlier interior	
4.1.	Lagrange Principle for the Lagrange Problem	203
	4.1.1. Statement of the Problem and the Formulation of	200
	the Theorem	203
	4.1.2. Reduction of the Lagrange Problem to a Smooth	203
	Problem	207
	4.1.3. Generalized DuBois-Reymond Lemma	208
	4.1.4. Derivation of Stationarity Conditions	
	4.1.5. Problem with Higher-Order Derivatives. The	210
	Fuler-Poisson Faustien	212
	Euler-Poisson Equation	212
4.2.	The Pontryagin Maximum Principle	214
	4.2.1. Statement of the Optimal Control Problem	
		214
	Lagrange Principle for the Optimal Control Problem .	217
	4.2.3. Needlelike Variations	217
	4.2.5. Reedictive variations.	220
	4.2.4. Reduction to the Finite-Dimensional Problem	222
	4.2.5. Proof of the Maximum Principle	223
	4.2.6. Proof of the Lemma on the Packet of Needles	227
	4.2.7. Proof of the Lemma on the Integral Functionals	234
4.3	Ontimal Control Broklers Linear tel Broken pr	
4.5.	Optimal Control Problems Linear with Respect to Phase	
	Coordinates	236
	4.3.1. Reduction of the Optimal Control Problem Linear	
	with Respect to the Phase Coordinates to the	
	Lyapunov-Type Problem	236
	4.3.2. Lyapunov's Theorem	237
	4.3.3. Lagrange Principle for the Lyapunov-Type	
	Problems	240
	4.3.4. Duality Theorem	245
	4.3.5. Maximum Principle for Optimal Control Problems	
	Linear with Respect to the Phase Coordinates	248
	A1' -4' 6 -1 -0 1	
4.4.	Application of the General Theory to the Simplest Problem	
	of the Classical Calculus of Variations	250
	4.4.1. Euler Equation. Weierstrass' Condition.	
	Legendre's Condition	250

xii

4.4.2. Second-Order Conditions for a Weak Extremum.	
Legendre's and Jacobi's Conditions	252
4.4.3. Hamiltonian Formalism. The Theorem on the	
Integral Invariant	255
4.4.4. Sufficient Conditions for an Absolute Extremum in	
the Simplest Problem	261
4.4.5. Conjugate Points. Sufficient Conditions for Strong	
and Weak Extrema	265
4.4.6. Theorem of A. E. Noether	272
4.4.7. Lagrange Variational Principle and the	
Conservation Laws in Mechanics	275
PROBLEMS	278
NOTES AND GUIDE TO THE LITERATURE	298
REFERENCES	301
BASIC NOTATION	306