Contents

'ART	1	STATI	C HYSTERON]		
	1.	Short-memory transducer				
		1.1	Transducer	1		
		1.2	States of transducer	2		
		1.3	Some properties of transducers	3		
		1.4	Admissible inputs	4		
		1.5	Vibro-correctness	6		
	2.	Generalized play				
		2.1	Ordinary play	Ć		
		2.2	Generalized play with piecewise monotone inputs	8		
		2.3	Estimates	10		
		2.4	Generalized play with continuous inputs	14		
		2.5	Dependence of outputs upon initial states	15		
		2.6	Correctness of the definition of the play	16		
		2.7	Monotonicity	17		
		2.8	Periodic inputs	19		
		2.9	Inputs defined on the whole real axis	20		
	3.	Hysteron		22		
		3.1	Stop	22		
		3.2	Determining systems of curves	24		
		3.3	Piecewise monotone inputs	28		
		3.4	Passage to arbitrary continuous inputs	28		
	4.	Canonical representation of hysteron and proof of				
		Theo	rem 3.2	30		
		4.1	Canonical hysteron	30		

		4.2	Canonical representation theorem	32
		4.3	Proof of Theorem 3.2	35
		4.4	Properties of hysteron	35
		4.5	Rectification of hysteron	39
	5.	Dist	ances	40
		5.1	Definition of distance	40
		5.2	Estimates on differences of output signals	43
	6.	Vari	ous input spaces	47
		6.1	Statement of the problem	47
		6.2	Spaces of continuously differentiable functions	48
		6.3	Play in the space S of absolutely continuous	
			functions	50
		6.4	Hysteron in the space S	51
		6.5	Hysterons in spaces H_{α}	53
		6.6	Discontinuous inputs	54
		6.7	Hysteron in the space of functions with bounded	
			variation	56
		6.8	Hysteron in Wiener spaces	57
PART	2	IDENT	TIFICATION THEOREM	59
7741	_			•
	7.		utification problem	59
			General identification problem	59
			Prehysteron	61
			Basic identification theorem	63
		7.4	Concluding remarks	64
	8.	Proc	of of Theorem 7.1	65
		8.1	Singular points of the domain $\Omega(V)$	65
			Construction of curves $\Pi(M)$	69
			Construction of curves Φ_{ℓ} , Φ_{r}	74
		8.4	Completion of the proof of Theorem 7.1	75
	9.	α - :	identifiability	78
		9.1	Statement of the problem	78
		9.2	Normal hysteron	79
		9.3	Theorem on α -identification	80
		9.4	A remark	81
	10.	Appr	roximate construction of hysteron	81

	10.1	Distance between hysterons	81
	10.2	Bounded inputs	8 6
	10.3	Frames of hysterons	88
	10.4	Approximation by operators different from hysterons	90
PART 3	VIBRO-	CORRECT DIFFERENTIAL EQUATIONS AND VARIABLE HYSTERONS	94
11.	Neces	sary condition of vibro-correctness	94
	11.1	Integrator	94
	11.2	Simple examples	96
	11.3	Necessary condition of vibro-correctness	97
	11.4	Vibro-correctness in a point	102
12.	Suffi	cient condition of vibro-correctness	103
	12.1	Main result	103
	12.2	An auxiliary equation	105
	12.3	A substitution	107
	12.4	Proof of Theorem 12.1	109
	12.5	Lemma on differential inequalities	110
	12.6	Vibro-correctness on smooth inputs	111
13.	Vibro	-solutions	113
	13.1	Definition	113
	13.2	Global vibro-correctness	115
	13.3	Inputs on finite time interval	117
	13.4	Inputs on infinite time interval	119
14.	Equat	ions with constraints	122
	14.1	Equations with discontinuous right-hand sides	122
	14.2	Arbitrary continuous constraints	125
	14.3	Vibro-correct equations with constraints	128
	14.4	Properties of vibro-solutions to equations with	
		constraints	132
	14.5	Vibro-solutions of parametrized equations	134
15.	Varia	able hysteron	138
	15.1	Description of hysteron by differential equations	138
	15.2	Variable hysteron	139
	15.3	Variable hysteron governed by differential equations	143
	15.4	Infinitesimal hysteron	145
	15.5	A special class of transducers	147

PART 4	MULTIDIMENSIONAL HYSTERONS	151
16.	Multidimensional play and stop defined on smooth inputs	151
	16.1 A simple example	151
	16.2 A general notion	154
	16.3 Correctness of the definitions of play and stop	158
	16.4 Properties of play and stop	160
	16.5 On the classical solutions of equations with	
	discontinuous right-hand sides	160
17.	Strictly convex characteristics	162
	17.1 Vibro-correctness modulus	162
	17.2 Hölder condition	164
	17.3 Passage to continuous inputs	166
	17.4 Strong convergence	167
	17.5 Perturbation of characteristics	167
	17.6 Vibro-correctness modulus and differential inclusion	ns 170
	17.7 Lower bound for vibro-correctness moduli	175
18.	Polyhedral characteristics	177
	18.1 Basic theorems	177
	18.2 Estimates of the Lipschitz constant	179
	18.3 Proofs of Lemma 18.1 and Theorem 18.4	18
	18.4 Proof of Theorem 18.3	184
	18.5 Remarks	180
19.	Arbitrary convex characteristics	18
	19.1 Vibro-correctness of play and stop	18
	19.2 Estimate for the variation of output	189
	19.3 Proof of Theorem 19.1	19
20.	Inputs with summable derivatives	193
	20.1 Statement of the problem	193
	20.2 Lipschitz condition	19
	20.3 Remarks	196
21.	Vibro-correct equations with vector input	19
	21.1 Statement of the problem	19
	21.2 Frobenius condition	19
	21.3 Necessary condition of vibro-correctness	20
	21.4 Sufficient condition of vibro-correctness	20

205

21.5 Remarks

22.	Equat	ions with vector inputs and smooth constraints	206
	22.1	Constraints	206
	22.2	Planar motion	208
	22.3	Other descriptions	209
PART 5	DISCON	TINUOUS NONLINEARITIES	212
FARI 3	DISCON	ITINOOUS NONLINEARITIES	414
23.	Stati	c elements	212
		Continuous characteristics	212
	23.2	Elements with discontinuous characteristics	214
	23.3	Estimates of outputs	216
		Proper characteristics	219
	23.5	Continuity on a fixed input	220
	23.6	Additional remarks	221
24.	Eleme	nts with monotone characteristics	223
	24.1	Cones	223
	24.2	Special classes of cones	224
	24.3	Monotone characteristics	226
	24.4	Proof of Theorem 24.1	228
	24.5	Proof of Theorem 24.2	230
	24.6	Remarks	231
25.	Eleme	nts with multi-valued characteristics	233
	25.1	Selection problem	233
	25.2	General theorems on selectors	234
	25.3	Monotone selectors	238
	25.4	Measurable selectors	240
	25.5	Input-output relations	241
26.	Closu	res of static element	243
	26.1	Closure of transducer	243
	26.2	Characteristic of the closure	244
	26.3	Closure modulo a negligence class	247
	26.4	Comments	248
27.	Weak	closures and convexification procedure	249
	27.1	Weak closures	249
	27.2	Convexification	251
	27.3	Weak closures and convexification of static element	252
	27.4	Proof of Theorem 27.1	253
	27.5	Proof of Theorem 27.2	257

	27.6	Convexification of static element modulo negligence	
		class	259
	27.7	Examples of open nonlinear systems composed of	
		static elements	260
28.	Relay		262
	28.1	Ideal relay	262
	28.2	Non-ideal relay	263
	28.3	Periodic inputs	266
	28.4	Closure of relay	268
	28.5	Convexification of relay	269
	28.6	Relay and "slow" controls	271
	28.7	Discontinuous inputs	272
PART 6	SELF-M	AGNETIZATION PHENOMENON	274
29.	Madel	ung's hysterons	274
		Non-correct prehysteron	274
	29.2	Periodic inputs	277
	29.3	Madelung's prehysteron	277
	29.4	Properties of Madelung's prehysteron	279
	29.5	Madelung's hysteron	281
	29.6	Discontinuous inputs with bounded variation	284
30.	Proof	s of Theorems 29.1 and 29.2	285
	30.1	Passage to classical solutions	285
	30.2	Lemma on differential inequalities	288
	30.3	Proof of Theorem 29.1	289
	30.4	Proof of Theorem 29.2	293
31.	Respo	onse to small perturbations of the input	294
	31.1	General scheme	294
	31.2	Intensities	296
	31.3	Construction of κ -outputs to Madelung's hysteron	299
	31.4	Construction of κ -vibrosolutions to differential	
		equations	304
	31.5	Construction of K-outputs for hysterons	311
32.	Closu	re modulo sets of Wiener measure zero	311
	32.1	A general scheme	311
	32.2	Main theorem	312

	32.3	Passage to integral equations	314
	32.4	Equations with constraints	317
	32.5	Implications for stochastic equations	317
PART 7	COMPLE	X HYSTERESIS NONLINEARITIES	320
33.	Paral	lel connections and bundles of hysterons	320
	33.1	Complex nonlinearities	320
	33.2	Parallel connections	321
	33.3	Completely controllable restrictions	323
	33.4	Periodic inputs	326
	33.5	An important example	330
	33.6	Remarks	331
34.	Seque	ntial connections of hysterons	332
	34.1	Sequential connections and cascades	332
	34.2	Sequential connections of plays and stops	335
	34.3	Compensators	338
	34.4	Complex connections	341
35.	Ishli	nskii's material	342
	35.1	Continual systems of hysterons	342
	35.2	Ishlinskii's transducer	343
	35.3	Loading and unloading functions	346
	35.4	Normal states of Ishlinskii's transducer	351
	35.5	Periodic inputs	354
	35.6	Davidenkov's model	357
	35.7	Controllable restrictions of Ishlinskii's bundles	358
36.	Prope	rties of Ishlinskii's transducer	359
	36.1	Continuity of Ishlinskii's operator	359
	36.2	Correctness with respect to weight functions	363
	36.3	Unilateral estimates	365
37.	Finit	e systems of relays	367
	37.1	Block-diagrams with relays	367
	37.2	Parallel connections and bundles of relays	367
	37.3	Independent perturbations of inputs	369
	37.4	General perturbation of input	370
38.	Cont i	nual systems of relays	371

38.1 Bundles of relays and CRS-transducers

371

	38.2	Monotonicity of CRS-transducers	373		
	38.3	Demagnetization function	373		
	38.4	Periodic inputs	374		
	38.5	Evaluation of outputs	375		
	38.6	Vibro-correctness	377		
	38.7	Controllable restrictions	381		
39.	Rheological models				
	39.1	Construction of the model	384		
	39.2	Graphs	386		
	39.3	Transducer M	389		
	39.4	Properties of the transducer M	391		
	39.5	Transducer W	393		
	39.6	Remarks	395		
Bib	phic comments	397			
References			400		
Sub	407				