Contents

Preface Notation

CHAPTER I					
The Basic Examples of Linear PDEs and Their Fundamental Solutions					
1.	The Basic Examples of Linear PDEs	3			
2.	Existence and Smoothness of Solutions Not Submitted to Side				
	Conditions	14			
3.	Analyticity of Solutions	22			
4.	Fundamental Solutions of Ordinary Differential Equations	26			
5.	Fundamental Solutions of the Cauchy-Riemann Operator	34			
6.	Fundamental Solutions of the Heat and of the Schrödinger				
	Equations	41			
7.	Fundamental Solutions of the Wave Equation	47			
8.	More on the Supports and Singular Supports of the Fundamental				
	Solutions of the Wave Equation	59			
	Appendix. Explicit Formulas for E_+ in Space Dimensions				
	Two and Three	62			
9.	Fundamental Solutions of the Laplace Equation	68			
	Appendix. Computation of the Area of the Unit Sphere	74			
10.	Green's Formula. The Mean Value Theorem and the Maximum				
	Principle for Harmonic Functions. The Poisson Formula.				
	Harnack's Inequalities	77			

vi CONTENTS

CHAPTER II

The Cauchy Problem

11.	The Cauchy Problem for Linear Ordinary Differential Equations	89
12.	The Cauchy Problem for Linear Partial Differential Equations.	
	Preliminary Observations	96
13.	The Global Cauchy Problem for the Wave Equation. Existence	
	and Uniqueness of the Solutions	102
14.	Domain of Influence, Propagation of Singularities, Conservation	
	of Energy	111
15.	Hyperbolic First-Order Systems with Constant Coefficients	119
16.	Strongly Hyperbolic First-Order Systems in One Space	
	Dimension	132
17.	The Cauchy-Kovalevska Theorem. The Classical and Abstract	
	Versions	142
18.	Reduction of Higher Order Systems to First-Order Systems	156
19.	Characteristics. Invariant Form of the Cauchy-Kovalevska	
	Theorem	161
	Appendix. Bicharacteristics and the Integration of the	
	Characteristic Equation	167
20.	The Abstract Version of the Holmgren Theorem	174
21.	The Holmgren Theorem	181
CH	IAPTER III	
Bou	undary Value Problems	
22.	The Dirichlet Problem. The Variational Form	189
23.	Solution of the Weak Problem. Coercive Forms. Uniform	
20.	Ellipticity	201
24.	A More Systematic Study of the Sobolev Spaces	210
	Appendix. The Sobolev Inequalities	217
25.	Further Properties of the Spaces H^s	224
26.	Traces in $H^m(\Omega)$	237
	Appendix. Extension to \mathbb{R}^n of Elements of $H^{m, p}(\Omega)$	245
27.	Back to the Dirichlet Problem. Regularity up to the Boundary	249
28.	A Weak Maximum Principle	259
29.	Application: Solution of the Classical Dirichlet Problem	268
30.	Theory of the Laplace Equation: Superharmonic Functions and	
	Potentials	278
31.	Laplace Equation and the Brownian Motion	294

	CONTENTS	vii	
32. 33.	Dirichlet Problems in the Plane. Conformal Mappings Approximation of Harmonic Functions by Harmonic Polynomials	306	
	in Three Space. Spherical Harmonics	314	
34.	Spectral Properties and Eigenfunction Expansions	322	
35.	Approximate Solutions to the Dirichlet Problem. The Finite		
	Difference Method	332	
36.	Gårding's Inequality. Dirichlet Problem for Higher Order		
	Elliptic Equations	347	
37.	Neumann Problem and Other Boundary Value Problems	254	
20	(Variational Form)	354	
38.	Indications on the General Lopatinski Conditions	367	
СН	IAPTER IV		
Mi	xed Problems and Evolution Equations		
39.	Functions and Distributions Valued in Banach Spaces	381	
40.	Mixed Problems. Weak Form	391	
41.	Energy Inequalities. Proof of Theorem 40.1: Existence and		
	Uniqueness of the Weak Solution to the Parabolic Mixed		
	Problem	401	
42.	Regularity of the Weak Solution with Respect to the Time		
	Variable	408	
43.	The Laplace Transform	416	
44.	Application of the Laplace Transform to the Solution of	40	
	Parabolic Mixed Problems	424	
45.	Rudiments of Continuous Semigroup Theory	436	
46.	Application of Eigenfunction Expansion to Parabolic and to	449	
47	Hyperbolic Mixed Problems An Abstract Existence and Uniqueness Theorem for a Class	447	
47.	of Hyperbolic Mixed Problems. Energy Inequalities	458	
	of Hyperbone winced Froblems. Energy inequalities	70	
Bib	Bibliography		