CONTENTS

CHAPTER 1.	THE ORIGIN OF TAUBERIAN THEORY	1
	O. Introduction	1
	l. Tauber's first theorem	2
	2. Tauber's second theorem	4
	3. A theorem of Fejér and its generalization	7
CHAPTER 2.	THE O-THEOREMS OF HARDY AND LITTLEWOOD	1 1
	1. The $ heta$ -theorems of Hardy and Littlewood	1 1
	2. Some extensions to general Dirichlet-series	19
CHAPTER 3.	SOME APPLICATIONS	21
	1. The series $\sum_{n=1}^{\infty} n^{-1-it}$ is not Abel-summable	21
	2. An alternative proof of a theorem of Jordan	22
CHAPTER 4.	INTRODUCTION TO PITT'S GENERAL TAUBERIAN THEOREM	24
CHAPTER 5.	INTRODUCTION TO WIENER'S GENERAL TAUBERIAN THEOREM	28
	1. First approach	28
	2. Second approach	32
CHAPTER 6.	FOURIER TRANSFORMS	33
	1. The simplest properties of Fourier transforms	33
	2. Fourier-inversion (Recovering f from f)	36
	3. Convolution products of functions in \mathbf{L}^1	43
	4. Approximate identities	44
	5. Existence and construction of	
	certain Fourier transforms	47
CHAPTER 7.	ANALYTIC FUNCTIONS OF FOURIER TRANSFORMS	52
CHAPTER 8.	WIENER'S GENERAL TAUBERIAN THEOREM	59
	l. Some simple properties of $\mathtt{T_f}$ and $\overline{\mathtt{T_f}}$	59
:	2. Proof of Wiener's theorem	59
CHAPTER 9. S	SOME ALGEBRAIC REFORMULATIONS	64
CHAPTER 10.	SOME ANALYTIC REFORMULATIONS	69
CHAPTER 11.	PITT'S GENERAL TAUBERIAN THEOREM	73
	. Pitt's theorem for slowly oscillating	
	functions on R	73
2	. Pitt's theorem for slowly oscillating	
	functions on R^+	77

CHAPTER	<pre>11. (continued)</pre>	
	3. Some applications	78
CHAPTER	12. A RELATED TOPIC: CLOSED SYSTEMS	80
CHAPTER	13. IKEHARA'S THEOREM	88
	0. Introduction	88
	1. Ikehara's theorem	8
	2. Bochner's theorem	93
CHAPTER	14. THE PRIME NUMBER THEOREM	94
	I. Number-theoretical preliminaries	9
	Some fundamental facts about ζ(s)	9
	3. The prime number theorem	10