Contents

Pref	ace to	Volume 2		•	•	•	,	•		•	•	v
Acknowledgements xv Contents of Volume 1												
6.0		duction										285
6.1	The F	Riesz–Herg	lotz Rep	resentati	ion ar	nd the	Millo	ux-So	chmidt			
	Inequ	ality .				•						285
	6.1.1	The Mille										287
	6.1.2	Maximun	n and mi	nimum	for fu	nctions	of fir	nite of	rder			291
6.2	The F	IKN Inequ	iality and	l Kjellb	erg's l	Regula	rity T	heore	m.			293
	6.2.1	An integr	al inequa	lity for	functi	ons in	a sen	nidisk				296
	6.2.2	The Hells										299
	6.2.3	Maximun										302
	6.2.4	An inequ										304
	6.2.5	Proof of										306
6.3	Furth	er Regular										311
	6.3.1	A lower b										312
	6.3.2	Global be	ehaviour	of the e	xtrem	als						315
	6.3.3	Regularit	y theoren	ns for th	ie Rie	sz mas	s and	chara	acterist	ic.		324
	6.3.4	The funct	ion $\theta(r)$	and loca	al beh	aviour	of th	e Ries	z mas	s .		326
	6.3.5	Density t	heorems									331
	6.3.6	The case										342
	6.3.7	Some oth	er results	· .								344
6.4	Cases	when $C(\mu$	(a) = 1; a	Theoren	n of B	eurling	ġ.,					344
	6.4.1	Proof of	Beurling'	s Theor	em							346
	6.4.2	An extens	-									347
	6.4.3	Minimun										349
	6.4.4	Some cou	ınterexan	nples								351

xviii CONTENTS

	6.5.1	Kövari's test sequences				356
	6.5.2	Maximum modulus, maximum term and chara	cteristic			359
	6.5.3	Local behaviour near the maximum and the m	inimum of	•		
		harmonic functions				362
	6.5.4	Maximum, minimum and characteristic for s.h.				365
	6.5.5	Some examples	·			371
6.6	Harm	Some examples				374
6.7	The N	Minimum of Functions of Slow Growth	•			376
	6.7.1	Functions of order $(\log r)^2$.	•			379
	6.7.2	Functions of order $(\log r)^2$ Functions of polynomial growth	•	•		381
Cha	pter 7.	Exceptional Sets				
7.0	Intro	luction				387
7.1		_				388
			•	•	•	395
	7.1.2	Wiener's criterion for the structure of thin sets Proof of Wiener's Theorem	•	•	•	397
	7.1.3	Wiener's criterion at finite points	•	•	-	401
	7.1.4	Functions having minimal growth in the plane	•	•	•	402
7.2	Funct	Wiener's criterion at finite points	• .	•	•	403
	7.2.1	Some general results on ψ -sequences	•	•		406
	7.2.2	Proof of Theorems 7.10 and 7.11	•		•	410
	7.2.3	Proof of Theorems 7.10 and 7.11 Proof of Theorems 7.8 and 7.9; preliminary res	ults		•	414
	7.2.4	Proof of Theorem 7.8				419
	7.2.5	Proof of Theorem 7.9.		•		421
7.3	Geom	petric Estimates for Capacity			•	425
	7.3.1	The capacity of an ellipsoid in \mathbb{R}^m , where $m \ge 1$	3			429
	7.3.2	Capacity in \mathbb{R}^2 .		•		434
	7.3.3	Capacity in \mathbb{R}^2	•	•	•	437
	7.3.4	Exceptional sets on rays			•	441
	7.3.5	Two counterexamples	•	•		444
7.4	Some	Applications to Function Theory	•	•		449
	7.4.1	Applications to <i>p</i> -valent functions	•	•		453
7.5	Minin	num of Functions in a Half-plane		•		457
	7.5.1	Completion of the proof of Hall's Theorem .			•	462
	7.5.2	Nome examples				465
	7.5.3	Boundary behaviour of $u(z)$.		•		469
	7.5.4	Boundary behaviour of $u(z)$. A form of the Phragmén-Lindelöf Principle.	•	•	•	470
7.6	Bound	dary Behaviour in a Half-plane	•	•	•	474
	7.6.1	Sufficient conditions for a rarefied set	•	•		475
	7.6.2	Necessary conditions for a rarefied set	•	•		481
	7.6.3	Further results on rarefied sets	•	•		485
	7.6.4	Near-fine limits, equivalent subdomains and fu		•	•	
		bounded characteristic				496

		CONTENTS					xix
7.7	Bour	ndary Behaviour in the Unit Disk		_			502
	7.7.1	Signed measures and characteristic for δ .s.h.	functi	ons			505
	7.7.2						510
	7.7.3	Boundary behaviour of negative harmonic fu	Inctio	18			515
	7.7.4	Boundary behaviour of Green's potentials					518
	7.7.5	Conclusion				•	528
			•	٠	•	•	320
Cha	pter 8.	Tracts and Asymptotic Values of Plane Subhar	monic	Fun	ctions		
8.0		duction					531
8.1	The C	Carleman-Tsuji-Heins Convexity Formula					532
	8.1.1	Wirtinger's inequality					532
	8.1.2	Statement of the convexity formula .					535
	8.1.3				•		537
	8.1.4	Extension to general s.h. functions .					540
	8.1.5	Proof of Theorem 8.1 with $\alpha_0(r)$ instead of α	(r)				542
	8.1.6	Completion of proof of Theorem 8.1 Learn Historian for $I(x)$ and $R(x)$					544
	8.1.7	inequalities for $I(r)$ and $B(r)$					546
8.2	Grow	th and Image of Functions in the Unit Disk					548
	8.2.1	Proof of Theorem 8.5					551
	8.2.2	Proof of Theorem 8.5					555
	8.2.3	A condition on the area of the image .				,	557
	8.2.4	Some examples					560
8.3	Func	tions with N Tracts					561
	8.3.1	Regularity theorems					564
	8.3.2	Functions with one asymptotic value .					573
	8.3.3	Functions with asymptotic functions .					575
	8.3.4	Preliminary results for Fenton's Theorem					578
	8.3.5	Completion of proof of Fenton's Theorem					584
8.4	Grow	th on Asymptotic Paths					586
	8.4.1	Functions of order less than ±					589
	8.4.2	Some other results					591
	8.4.3	Tracts and asymptotic values				Ċ	592
8.5	Extre	mal Length					595
	8.5.1	Application to functions with N tracts; Ahlfo		iral	·		0,0
	0.5.1	Theorem					599
	8.5.2	Proof of Ahlfors' Theorem					605
	8.5.3	Variation of the argument on a fixed circle			•		608
8.6		ormal-Mapping Techniques					610
5.0	8.6.1	A Phragmén-Lindelöf Theorem for a strip	•			•	611
	8.6.2	A length area principle					612
	8.6.3	Ahlfors' inequalities	•			•	613
	0.0.0		•				012

616

619

622

Eke's Regularity Theorem .

Regularity Theorems for the Tracts

8.7.1 Proof of Theorem 8.27

8.7

CONTENTS $\mathbf{X}\mathbf{X}$

8.7.2 Consequences of Theorem 8.27 . . .

	8.7.2	Consequences of Theorem 8.27	7.						624
	8.7.3	Conclusions							627
	8.7.4	Examples							629
3.8	Minir	num on a Curve for Functions	of Finite	Lower	Orde	r			631
	8.8.1	Proof of Theorem 8.29 .		•					636
	8.8.2	The case $K = 1$.	•						639
∩ha	nter Q	Baernstein's Star Function and	its Annli	cations	!				
									(15
9.0		duction			•	•	•		645 646
9.1		Fundamental Theorem on the St			•	•	•	•	650
	9.1.1	Two lemmas of Sjögren			•	•	•	•	
	9.1.2	Completion of the proof of Th			•	•	•	•	652
9.2		s and Symmetrization	•		•	•	•	•	654
	9.2.1	Some real-variable results				•	•	•	655
	9.2.2	Symmetrization and the Green				•	•	•	658
	9.2.3	Proof of the majorization theo						•	661
	9.2.4	Symmetrization and harmonic			•		•	•	665
9.3		rization Theorems for Univalen	t Function	ons	•	•	•	•	669
	9.3.1	Proof of Theorem 9.6.	•	•		•			672
	9.3.2	Weakly univalent functions.	•						673
9.4		ormal Mapping and the Hyperb	olic Met	ric	•	•			678
	9.4.1	J.1							682
	9.4.2	Hyperbolic distances and Scho			n		•		684
	9.4.3	Some estimates for the hyperb		ric					688
9.5	Symn	netrization and the Hyperbolic l	Metric						692
	9.5.1								693
	9.5.2	Proof of Theorem 9.15 .							698
	9.5.3	Application to the hyperbolic	metric						698
	9.5.4	A sharp form of Landau's The	eorem						702
	9.5.5	Numerical estimates for $\sigma(r)$ a	t 1 and	∞					704
	9.5.6	Examples on Schottky's Theo	rem.						707
9.6	Pólya	Peaks and the Local Indicator	for Fun	ctions	in the	Plane	:.		708
	9.6.1	Pólya peaks							710
	9.6.2	The Phragmén-Lindelöf indic	ator						712
	9.6.3	Proof of Theorem 9.20 .							716
	9.6.4	Uniform absolute continuity a	nd Fuch	ıs's Sm	all Ar	cs			
		Lemma							721
	9.6.5	An estimate for $h'(\theta)$.							727
9.7		cations to Functions in the Plan	ne: Paley	y's Cor	njectur	·e			730
	9.7.1	Baernstein's Spread Theorem					cies		733
	9.7.2	The Edrei-Fuchs Ellipse Theo			,				738
9.8		Examples							739
	9.8.1								739
	9.8.2	Examples illustrating Section	9.7						742
	_								7.00

CONTENTS XXI

Chapter 10.		xamples of Subharmonic and Regular Functions, and the MacLane- ornblower Class										
10.0 Introd	uction											751

	muout		•	•	•	7.7.1					
10.1	Minima	al Positive Harmonic Functions	•			752					
	10.1.1	Functions with <i>n</i> tracts				755					
	10.1.2	Warschawski's Theorem				757					
	10.1.3	The asymptotic estimate				760					
10.2	Function	ons with Bounded Minimum				765					
	10.2.1	Functions with <i>n</i> tracts				769					
	10.2.2	Functions with n tracts Functions bounded on spirals in the plane				775					
10.3	Asymp	totic Paths and the MacLane-Hornblower Theory				779					
	10.3.1	The Access Theorem				779					
	10.3.2	The class of MacLane and Hornblower .				784					
	10.3.3	Proof that (iii) \Rightarrow (i); preliminary results .				786					
	10.3.4					789					
	10.3.5	Some examples				793					
10.4	Growtl					797					
	10.4.1	Construction of the domain				798					
	10.4.2	Proof of Theorem 10.11				79 9					
	10.4.3	Spiral functions and their growth				802					
	10.4.4	Proof of Theorem 10.14; preliminary estimates				805					
	10.4.5	Completion of the proof of Theorem 10.14.				808					
	10.4.6	Some further results				811 812					
10.5	10.4.6 Some further results										
	10.5.1	Functions in the plane				815					
	10.5.2	Functions in the unit disk				818					
	10.5.3	Regular functions bounded on curves in the plane				819					
	10.5.4	The spirals of Theorem 10.8				824					
	10.5.5	A global upper bound				828					
	10.5.6	Some examples				833					
	10.5.7	The rate of tending to zero along the curves.				838					
10.6	Approx	ximation in the Unit Disk				841					
	10.6.1	Regular functions tending to 0 and ∞ on different	spiral	s in tl	1e						
		unit disk				846					
10.7	The Ex	sistence of Thin Components				852					
	10.7.1	A function with two thin components				854					
	10.7.2	A function with non-countably many thin compon	ents			856					
	10.7.3	A theorem on thin components				858					
	10.7.4	A function with one thick and two thin limit comp	onen	ts	•	859					
Refe	rences .					865					
Inde	х .					873					