Contents

Prefaces

Part 1: Vector Calculus

1.	Vectors and Scalars, Vector Algebra	
1.1	Vectors and Scalars	1
1.2	Vector Algebra	3
1.3	Unit Vector, Components of a Vector	4
1.4	Magnitude and Direction of a Vector	9
1.5	Position Vector, Vector and Scalar Field	5
1.6	A Few Geometrical Problems	(
2.	Scalar and Vector Product, Expansion of the Vector Concept	
2.1	Scalar Product, Applications	7
2.2	Vector Product, Applications	ģ
2.3	Multiple Products	12
2.4	Expansion of the Vector Concept	14
3.	Vector Differentiation	
3,1	Ordinary Differentiation of Vectors, Spatial Curves	17
3.2	Differentiation of Vector Sums and Products	18
3.3	Differentiation of Multiple Products	18
3.4	Problems and Applications	18
4.	Gradient, Divergence, Curl, LAPLACIAN Fields	
4.1	Gradient, Divergence, Curl	19
4.2	Formulas Involving the Vector Differential Operator $f abla$	20
4.3	A Few Problems and Applications, LAPLACIAN Fields	2
5.	Vector Integration, Conservative Vector Fields	
5.1	Concept of Vector Integrals	24
5.2	Examples of Vector Integrals	24
5.3	Conservative Vector Fields, Potential	25
5.4	Applications, Examples	29

6.	GAUSS' and GREEN's Identities, STOKES' Theorem	
6.1	GAUSS' Identity (Divergence Theorem)	30
6.2		32
6.3	Further Integral Theorems	33
6.4	Definitions of the Vector Operations Divergence, Gradient, and Curl as Limits	34
6.5	GREEN's Theorem for a Plane and STOKES' Theorem	36
7.	Curvilinear Orthogonal Coordinates	
7.1	Definition of Curvilinear Coordinates	40
7.2	Position Vector, Unit Vectors Tangent to the Coordinate Lines, Unit Vectors Normal to the Coordinate Surfaces	41
7.3	Line and Volume Element	43
7.4	Gradient, Divergence, Curl, LAPLACE Operator	44
7.5		48
7.6	Cylindrical Coordinates	49
7.7	Ellipsoidal Coordinates	51
1.	Attraction of Finite Masses	
1.1	Force of Attraction and David Park	
1.2	Force of Attraction and Force Field of Two Point Masses Arbitrary Number of Mass Points	54
1.3	Spatial Masses	55
1.4	Masses Distributed on Surfaces and Lines	56
1.5	Applications, Examples	58
5		59
2.	The Potential and its Basic Qualities	
2.1	Concept of the Potential	67
2.2	Potential of Attraction of Finite Masses	70
2.3	Potential of Attraction for Single Layers and Double Layers	72
2.4	LAPLACE's Differential Equation	74
2.5	Behavior of the Potential of Attraction and its First Derivatives at Infinity	75
2.6	Equipotential Surfaces, Lines of Force	77
2.7	Regular Harmonic Functions, Regularity at Infinity	78
2.8	Applications, Examples	78

١.	Integral Theorems of Potential Theory	
3.1	Vector Flux, Solenoid Fields	82
3.2	Flux of the Force of Attraction Through a Closed Surface	84
3.3	Non-Vortical Fields	87
3.4	POISSON's Differential Equation	88
3.5	GREEN's Formulas	88
3.6	Determination of STOKES' Constants of a Body	91
3.7	Interpretation of a Harmonic Function as a Potential, GREEN's Fundamental Formula of Potential Theory	92
4.	Behavior of the Potential and its Derivatives Inside the Field Producing Masses	
4.1	Potential of a Spatial Mass Within the Field Producing Mass	96
4.2	Attraction of a Spatial Mass for Field Points Within the Masses	99
4.3	Continuity of the Spatial Potential and its First Derivatives Inside the Field Producing Masses	100
4.4	The Second Derivatives of the Potential of a Spatial Mass Within the Field Producing Masses, POISSON's Equation	104
4.5	The Potential of the Single Layer and its First Derivatives for Field Points on the Layer	106
4.6	Discontinuity of the Potential of a Double Layer	110
4.7	Applications, Examples	114
Part	III: Representation of Attracting Potentials by Means of Spherical and Ellipsoidal Harmonics	
1.	Power Series for Attracting Potentials	
1.1	Power Series for the Potential of a Spatial Mass, Analytical Character of the Potential	117
1.2	Development of the Reciprocal Distance Between Two Points into LEGENDRE's Polynomials	120
1.3	Development of Attracting Potentials into LEGENDRE's Polynomials	122
2.	LEGENDRE's Polynomials	
2.1	Basic Qualities	124
2.2	Development of the Generating Function in a FOURIER Series	125
2.3	The Recursion Formulas of BONNET and CHRISTOFFEL	126
2.4	Calculation of LEGENDRE's Polynomials	128

130

2.5 RODRIGUES' Formula

3.	Definition of Spherical Harmonics	
3.1	Spatial Spherical Harmonics	131
3.2		131
3.3	LAPLACE's Surface Spherical Harmonics	135
3.4	Determination of LAPLACE's Surface Spherical Harmonics as Solutions of LAPLACE's Equation	137
3.5	LEGENDRE's Spherical Harmonics	138
3.6	Calculation of LEGENDRE's Associated Spherical Harmonics	141
3.7	Further Discussion of the Surface Spherical Harmonics	
3.8	LEGENDRE's Spherical Harmonics of the Second Kind	142 146
4.	Series Expansions in Spherical Harmonics	
4.1	Orthogonality of LEGENDRE's Polynomials	148
4.2	Normalized Orthogonal Functions	150
4.3	A Finite Series for LEGENDRE's Polynomials	153
4.4	Series Expansions in Surface Spherical Harmonics	157
4.5	Examples of Series Expansions in Spherical Harmonics	160
4.6	Determining Coefficients of the Series Expansion of Empirically Given Functions	164
4.7	Series Expansion with Normalized Spherical Harmonics	172
5.	Ellipsoidal Harmonic Functions	
5.1	LAPLACE's Equation in Ellipsoidal Coordinates	174
5.2	Ellipsoidal Harmonic Functions as Solutions of LAPLACE's Equation	175
Part	IV: Boundary Value Problems of Potential Theory	
1.	Introduction	
1.1	Formulation of the Boundary Value Problems	178
1.2	Importance of Boundary Value Problems, Especially for Physical Geodesy	179
1.3	The Uniqueness Theorems of the Three Boundary Value Problems	179
1.4	The Inverse Problem of Potential Theory (STOKES' Theorem)	181
2.	Some Solutions for the Three Boundary Value Problems	
2.1	Solution of the First Boundary Value Problem for the Space Exterior to a Sphere by the Use of POISSON's Integral	183
2.2	Solution of the First Boundary Value Problem Using Surface Spherical Harmonics	185

2.3	Solution of the Second Boundary Value Problem for the Space Exterior to a Sphere by Surface Spherical Harmonics	188
2.4	Solution of the Third Boundary Value Problem for the Space Exterior to a Sphere by Surface Spherical Harmonics	189
2.5	STOKES' Integral Formula	191
2.6	Solution of the First Boundary Value Problem for the Interior and Exterior Space of a Rotational Ellipsoid	195
3.	Boundary Value Problems and Integral Equations	
3.1	Defining the Problems	196
3.2	Concept of the Integral Equation	197
3.3	The Integral Equations of the First Boundary Value Problem	198
3.4	The Integral Equations of the Second Boundary Value Problem	200
3.5	The Integral Equations of the Third Boundary Value Problem	201
4.	Solution of FREDHOLM's Linear Inhomogeneous Equation of the Second Type	
4.1	NEUMANN's Method of Successive Approximation	202
4.2	Product Kernels	206
4.3	FREDHOLM's Solution Method	211
4.4	FREDHOLM's Alternative Theorem	213
5.	Proof of Existence for the Solutions of Boundary Value Problems	214
		216
Selec	cted Bibliography	216
inde	(218